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         Preface  

   Goals  

 Keeping up with new developments in most areas of computing requires familiarity 

with basic logical concepts. In particular, your success in most aspects of software 

development significantly depends on your ability to reason correctly, to communi-

cate your reasoning, and to understand and evaluate the reasoning of others. These 

abilities are critical for anyone who does feasibility analysis, systems analysis, 

problem specification, database design or management, program design, coding, 

testing, verification, problem diagnosis, documentation, software maintenance, or 

research in any of these areas. 

 If you know little about how logic can be used in software development and if 

you want to know more, then this book may be of use to you. After reading it you 

should be better able to reason about software development, to communicate your 

reasoning, to distinguish between good and bad reasoning, and to read professional 

literature, which presumes knowledge of elementary logic. 

 On the other hand, if you think that your own logical abilities are good enough, 

but that many other people are sadly deficient in these abilities, then please give 

copies of this book to those who need it.  

  Overview and Features  

 Applications of logic to software development are emphasized throughout. 

Examples involving program instructions are expressed in pseudocode so that the 

book makes no use of any particular programming language. It is divided into three 

parts. Part I is about language and logical form. It explains how to find and repre-

sent the logical forms of statements expressed in English. It shows how to use a 

subset of English, here called  logical English , to represent both the meanings and 

logical forms of statements. Logical English is intermediate between informal but 

meaningful English and the largely meaningless and severely abstract notations 

commonly used in formal logic, and used here in Part III. This intermediate role 
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resembles the role of pseudocode. Like pseudocode, logical English is still recog-

nizable English. And like pseudocode, it is a helpful bridge between informal 

English and a highly formal notation. They differ in that logical English is used to 

express statements and conditions while pseudocode is used to express instructions. 

Part I ends by describing how to use logical English to clarify and express data 

structure definitions, problem specifications, and conditions in instructions. 

 Part II is about truth in the ordinary “material” sense of that term. It shows how 

to use truth tables to determine the truth or falsity of a complex statement built 

using connectives such as “not”, “and”, “or”, and “if…then…” if you know the 

truth or falsity of its component statements. Truth conditions for statements involv-

ing the quantifiers “all” and “some” are also described. Following that, several 

computer-related applications of this material are discussed. The final chapter 

shows how to apply truth value calculations to forward and backward tracing of 

program execution. 

 Part III is about “logical” truth. Logical truth is a generalization of material truth. 

It involves ignoring the meanings and material truth values of individual statements 

and focusing only on their logical forms. Much of what is known about how to rea-

son correctly can best be stated in terms of logical forms. For example, the state-

ment form “P or not P” is logically true. As a result, no matter what statement is 

used in place of P, the resulting statement of the form “P or not P” is materially 

true. 

 This part also explains and shows how to test statements for logical equivalence, 

logical implication, and logical redundancy, and how to test arguments for validity 

and soundness. It also explains how to use rules of inference to make proofs. It then 

describes how to apply these concepts to problem specifications. This is followed 

by a proof that no computer program that solves the problem of determining 

whether any arbitrarily selected program will halt with any arbitrarily selected input 

can be written. That bad news is followed by the good news that it is possible, 

though difficult, to prove that a program is correct relative to a problem specifica-

tion, without doing any testing. Examples showing how to do this in simple cases 

are given. The last chapter briefly discusses some topics not covered here, e.g. logic 

testing and quantum computing. It includes a few pointers to additional sources of 

information about these topics.  

  Suggested Uses  

 This book is designed to be used by computer professionals and students who want 

to study on their own without an instructor. It is also suitable as the primary text for 

instructor led introductory courses on logic for students who are studying any of the 

computing disciplines. Earlier versions of much of this material were class tested 

in a college level course I teach on logic and its applications to computing. In addi-

tion, the three parts of the book can be the basis for three or more short professional 

development courses.  

vi  
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  Target Audiences  

 Students and professionals who expect to be involved with any aspect of software 

development are the target audiences for this book. No prior knowledge of formal 

logic is assumed. Some knowledge of software development is assumed.  

  Audience Resources  

 Many examples as well as many practice exercises, along with solutions to half of 

them, are included here. Solutions to all the exercises can be had by instructors at 

  http://www.springer.com/978-1-84800-081-0     

 Readers can contact me at   http://www.logicforsoftwaredevelopment.com    . I 

intend to post corrections to newly discovered errors, pointers to additional 

resources, logic jokes, and other related information there. 

 Readers are also urged to use the email link there to send error reports and con-

structive suggestions for improving this book.  
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            Part I  
 Language and Logical Form       

 Part I explains how to determine the logical forms of statements and how to use 

“logical English” to represent those forms without losing touch with their meaning. 

Logical English consists of abbreviations for logically important parts of statements 

along with rules for organizing those abbreviations. Its purpose is to help people 

communicate and reason better. It plays a role in logic similar to the role played by 

pseudocode in programming. Various examples of its use are described in Chaps. 

4–7.        

  Chapter 1 Atomic Statements  

  Chapter 2 Compound Statements  

  Chapter 3 Quantified Statements  

  Chapter 4 Expressing Arguments  

  Chapter 5 Defining Data Structures  

  Chapter 6 Expressing Problem Definitions  

  Chapter 7 Expressing Program Designs       



 Chapter 1   
 Atomic Statements 

R. Lover, Elementary Logic: For Software Development, 3

DOI: 10.2007/978-1-84800-082-7, © Springer 2008

        In this chapter the logical structure of the simplest kind of statements, called atomic 
statements, is described. Logical English is introduced and used to represent this 
structure. After studying this chapter you should be able to identify names, 
predicates, and descriptions in atomic statements and express the logical structure 
of atomic statements using logical English.  

  Outline 

  1.1 Vagueness and ambiguity  

  1.2 Logical English  

  1.3 Names  

  1.4 Predicates  

  1.5 Descriptions  

  1.6 Atomic statements    

   1.1 Vagueness and Ambiguity  

 Vagueness and ambiguity often cause ineffective communication and bad reason-

ing. It is best to eliminate much of it before representing the logical structure of 

(ordinary) English in logical English. 

  Definition 1 .  An instance of a word, phrase, statement, or set of statements is said 
to be  vague  if and only if, in its context, it is unclear whether the expression does 
or does not apply to some relevant cases and this lack of clarity is not due to igno-
rance about the facts of the situation.  

  Example 1 .  A specification that requires classifying people into those who are tall 
and those who are not tall would be vague. The specification could be clarified by 
stipulating that in this specification someone is tall if and only if they are 6 feet tall 
or taller.  
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  Example 2 .  A specification that requires an “appropriately worded error message” 
at a certain point would be vague. Various levels of clarification could be had by 
spelling out what would count as an “appropriately worded error message” with 
various levels of specificity. 

 Most expressions are vague to some extent. Often this does no harm and greatly 

simplifies communication. For example, the context may make clear what is meant or 

cases involving vagueness are not under consideration. Vagueness should be reduced 

if it makes an important difference in how an expression will be understood.  

  Definition 2 .  An instance of a word, phrase, statement, or set of statements is said to be 
 ambiguous  just in case it can reasonably be understood to have two or more different 
meanings in that context. 

 Many expressions are ambiguous. Just look at any dictionary and you will see 

numerous different meanings for many words and phrases. A classic example of an 

ambiguous statement is “The Greeks the Romans will subdue.” Does it mean the 

Greeks will subdue the Romans or does it mean the Romans will subdue the Greeks? 

 Vagueness and ambiguity are very different. An expression can be vague without 

being ambiguous, ambiguous without being vague, or both vague and ambiguous. 

Ambiguity can be eliminated by specifying which meaning is intended. Vagueness 

can be reduced or eliminated by being more precise about how to apply the term.  

  Example 3 .  A specification that requires output to be sorted is not necessarily 
vague, but it is ambiguous. Is the output to be sorted in ascending order or descend-
ing order?  

  Example 4 .  A specification that required adding “long lists of numbers” is at least 
vague and perhaps ambiguous. The term “long list” is vague. How long? Depending 
on context “numbers” may be ambiguous. Are the numbers just integers, just 
rational numbers, all real numbers? What about complex numbers?   

  1.2 Logical English  

  Definition 3 .  A notation, called  Logical English , will be described in this and the 
next few chapters. It consists of abbreviations for and slight rearrangements of 
statements expressed in English. 

 Understanding logical English will make a wide variety of computing literature 

available to you. It is found in program specifications, data structure definitions, 

program designs, software testing literature, proofs of program correctness, documentation, 

and computer science literature. Knowing how to write logical English can improve 

the clarity and efficiency of your communication and your reasoning. 

 Logical English is a bit like pseudocode. Like pseudocode it is English 

restricted in vocabulary and form. Like pseudocode it is intended to help people 
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clarify their thoughts, communicate clearly, and reason correctly. Like pseudoc-

ode, there is no official definition of it, so different authors use different versions 

of it. And like pseudocode, once you have mastered one version of it, it is easy to 

understand and use other versions. It differs from pseudocode in that logical 

English is used to represent statements and conditions while pseudocode is used 

to represent instructions. The logical English used here will be characterized by a 

few rules. The most important rule is: 

 LE Rule 0: The rules of logical English can be bent or broken in a specific context 

if doing so will help people communicate or reason better.   

  1.3 Names  

 In logical English short names, like “Joe” or “3.53”, are often left as is. Long 

names, like “Rumplestiltskin”, are usually shortened, e.g. to “Rump”, “R”, or “r”. 

In logical English names like “George Washington” that have embedded blanks 

are written without embedded blanks. Two common ways of doing this are to use 

underscores in place of blanks, e.g. “George_Washington”, or to simply omit the 

blanks, e.g. GeorgeWashington”. When extreme brevity is desired, lowercase let-

ters from the beginning of the alphabet are used to represent names, e.g. “gw” or 

just “g”. 

  Example 5 .  Names

 English  Logical English 

 Joe  Joe, j, j 
3
  

 George Washington  georgeWashington, 

 GeorgeWashington, 

 George_Washington, 

 gw, g,… 

 3.53  3.53, n 
6,
 , n 

  LE Rule 1.  Abbreviations used in logical English are written without embedded 

blanks, often using  camelback notation . Camelback notation consists of writing a 

sequence of words or abbreviations for words without blanks between them and 

capitalizing the first character of each word or abbreviation, e.g. GeorgeWashington. 

Sometimes the first character is written in lower case and the notation is called  sad 
camelback notation , e.g. georgeWashington. (The sadness of the camel is indicated by 

its head being lowered.) 

 There are no rules about which abbreviation to use for what, but there are common 

practices. For example, it is helpful if an abbreviation reminds the reader of what it 

abbreviates. For example using ‘g’ rather than ‘x’ to abbreviate ‘George’ or using 

‘7Open’ rather than ‘X 
33

 ’ to abbreviate ‘File 7 is open.’   
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  1.4 Predicates  

 A predicate is an expression used to refer to a property of individual things or a 

relation between pairs of things, among triples of things, quadruples of things, and 

so on. 

  Definition 4 .  A  1-place predicate  is a predicate that refers to a property of individual 
things. A  2-place predicate  is a predicate that refers to relations between pairs of 
things. A  3-place predicate  is a predicate that refers to relations among triples of 
things. In general, an  N-place predicate , where N can be any positive integer, is a 
predicate that refers to properties of or relations between or among N things. 

 Note that predicates in this logical sense of the term are not quite the same as 

predicates as studied in English grammar.  

  Example 6 .  Predicates, with places indicated by …

   1-place predicates

   … is an open file  

  … is an odd integer  

  … is taller than Joe  

  Joe is taller than…     

   2-place predicates

   … is taller than…  

  … hates…  

  … is between Chicago and …  

  Kalamazoo is between … and …  

  … is between … and Detroit     

   3-place predicates

   … is between … and …  

  has length…width…and depth…     

  4-place predicates

   …is more like…than… is like…  

  …is to…as…is to…       

  LE Rule 2 . In logical English the names and descriptions (discussed below) to 

which predicates are applied are written to the right of the predicate,  separated by 

commas, the whole list in parentheses. When single letters of the alphabet are 

used to represent predicates it is customary to use capital letters, with or without 

numeric subscripts. Where mathematical concepts are involved, mathematical 

notation is often included in logical English. Which abbreviation to use is up to 

the user, but the point is to use the shortest abbreviations that still reminds users 

of the original meaning. Examples of these abbreviations are given below.
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 Predicates  Logical English 

 1-place 

 … is an open file  OpenFile(…) 

 … is an odd integer  OddInt(…) 

 … is taller than Joe  TallerThanJoe(…) 

 Joe is taller than…  JoeTallerThan(…) 

 2-place 

 … is taller than…  IsTallerThan(…, …) 

 … hates…  Hates(…, …) 

 … is between Chicago and …  BtwnChi(…, …) 

 Kalamazoo is between … and …  KzoBtwn(…, …) 

 … is between … and Detroit  BtwnAndDet(…, …) 

 3-place 

 … is between … and …  IsBtwn(…, …, …) 

 has length…width…and depth…  LWD(…, …, …) 

 4-place 

 …is more like…than… is like…  CompareSim(…, …, …, …) 

 …is to…as…is to…  Proportion(…, …, …, …) 

  1.5 Descriptions  

 There are expressions of English that refer to things by describing them rather than 

naming them. For example, we might say that Henry is the father of Jack. Or we 

might say that Henry is a parent of Jack. The expression ‘the father of Jack’ is 

called a definite description of Jack’s father, while the expression ‘a parent of Jack’ 

is called an indefinite description of one of Jack’s parents. 

  Definition 5 .  A  description  of something refers to that thing by describing it rather 
than naming it. A  definite description  describes in such a way that exactly one thing 
is supposed to fit the description. An  indefinite description  describes in such a way 
that at least one thing is supposed to fit the description, without implying that it is 
the only thing that fits that description.  

  Example  7 .  Descriptions

 Description type  Informal English 

 definite  the father of Jack 

 definite  Jack’s father 

 indefinite  a parent of Jack 

 definite  the smallest integer greater than 5 

 indefinite  an integer greater than 5 

 indefinite  some integer greater than 5 

 Care must be taken when using descriptions. While a definite description 

attempts to describe exactly one thing, it may fail to do so either because it describes 

nothing or because it describes more than one thing. For example, “the present king 
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of France” is a definite description which describes nothing. While “the square root 

of 16” describes both 4 and -4. If you use a definite description as if it succeeded 

in describing exactly one thing, and it does not, then your communication or rea-

soning may be incorrect. 

 Similarly, care must be taken when using indefinite descriptions. While an 

indefinite description attempts to describe at least one thing, it may fail to do so 

because it describes nothing. For example, “a round square” describes nothing. If 

you use an indefinite description as if it succeeded in describing at least one thing, 

and it does not, then your communication or reasoning may be incorrect. In this 

book definite descriptions will be used more than indefinite descriptions.  

  Example 8 .  Definite descriptions

 English  Logical English 

 Jill’s husband  husbandOf(Jill) 

 the sum of 3 and 4  3 + 4 

 +(3, 4) 

 the father of Carol  fatherOf(Carol) 

 the square of 4  squareOf(4) 

 4 2  

 The value returned by subroutine   SUB3 with input 7  SUB3(7) 

 Complex definite descriptions can be constructed out of simpler definite descrip-

tions. For example, ‘my father’s father’s mother’s only aunt’ or ‘‘the output from 

applying subroutine7 to the output from subroutine3’. Here are some more exam-

ples of complex definite descriptions.  

  Example 9 .  Complex definite descriptions

 Complex definite descriptions in English  In logical English 

 the result of adding 5 to the result of multiplying 7 by the result 

of dividing 44 by 2  7*(44 / 2) + 5 

 the maximum of the square of a and the square of b  max(a 2 , b 2 ) 

  1.6 Atomic Statements  

  Definition 6 .  A  statement  is the sort of sentence which is either true or false. 
Statements are distinguished from other kinds of sentences such as questions, com-
mands, promises, instructions, and wishes.  

  Definition 7 .  An  atomic statement  is a statement consisting of a single predicate 
and one or more names or descriptions.  
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  Example 10 .  Statements with 1-place predicates

 Grammatical category  English  Logical English 

 name  Jo  Jo, j 

 1-place predicate  …is tall  isTall(…) 

 T(…) 

 atomic statement  Jo is tall  isTall(Jo) 

 isTall(j) 

 T(Jo) 

 T(j) 

 T 
1
 (j) 

 name  3  3 

 1-place predicate  …is an odd integer  oddInteger(…) 

 odd(…) 

 O(…) 

 atomic statement  3 is an odd integer  oddInteger(3) 

 odd(3) 

 O(3) 

 name  file7  file7, f 
7
 , f 

 1-place predicate  …is an open file  openFile(…) 

 O(…) 

 atomic statement  File7 is an open file  openFile(file7)? 

 openFile(f 
7
 ) 

 O(f) 

  Example 11 .  Statements with 2-place predicates

 Grammatical category  English  Logical English 

 name  Joe  Joe, j 

 name  Sam  Sam, s 

 2-place predicate  …is taller than…  isTallerThan(…, …) 

 T(…, …) 

 atomic statement  Joe is taller than Sam  isTallerThan(Joe, Sam) 

 T 
2
 (Joe, Sam) 

 T(j, s) 

 name  three  3 

 name  five  5 

 2-place predicate  …is less than… 

 …<… 

 lessThan(…, …) 

 L(…, …) 

 …<… 

 <(…, …) 

 atomic statement  Three is less than five  lessThan(3, 5) 

 L(3, 5) 

 3 < 5 or <(3, 5) 

 atomic statement  John is a parent of Carol  aParentOf (John, Carol) 

 atomic statement  Carol is a parent of John  aParentOf (Carol, John) 
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 Grammatical category  English  Logical English 

 atomic statement  Carol is a child of John  aChildOf (Carol, John) 

 atomic statement  3 is greater than 1  isGreaterThan(3, 1) 

 3 > 1 

 >(3, 1) 

  Exercise  1 .  For (a)–(d), use the logical English abbreviations described below to 
transform the English statements into logical English

 Grammatical category  English  Logical English 

 name  Bob  b 

 name  Alice  a 

 1-place predicate  …is tall  T 
1
 (…) 

 2-place predicate  …is taller than…  T 
2
 (…, …) 

 (a) atomic statement  Alice is tall. 

 (b) atomic statement  Bob is tall. 

 (c) atomic statement  Alice is taller than Bob. 

 (d) atomic statement  Bob is taller than Alice. 

      The identity predicate is an especially important 2-place predicate. It is applied 

to pairs of names or definite descriptions. Two names or definite descriptions are 

said to be identical just in case they are names or descriptions of the same thing. 

Moreover, we have a special symbol for it, the = symbol. In logical English the 

mathematical relations <, =, and > are usually written with the symbol between two 

expressions as with 3 < 5, 3 = 5, and a  > b. This is known as infix notation. 

Occasionally they are written with the symbol in front of the two expressions as with 

< (3, 5), = (3, 5), and > (a, b). This is known as prefix notation.  

  Example 12 .  Logical English for the identity relation

 English  Logical English 

 Mark Twain is identical to Samuel Clemens.  MarkTwain = SamualClemens 

 = ( MarkTwain, SamualClemens) 

 “2” and “two” are names for the same number.  2 = two 

 = (2, two) 

 (infix) 

 (prefix) 

 7 is the sum of 3 and 4.  7 = 3 + 4  (infix) 

 16 is the square of 4.  16 = squareOf(4)  (infix) 

 John is the father of Carol.  John = fatherOf(Carol)  (infix) 

  Exercise 2 .  For (a)–(d), use the logical English abbreviations described below to 
transform the English statements into logical English

 Grammatical category  English  Logical English 

 name  Samuel Clemens  a 

 name  Mark Twain  b 

 2-place predicate  …is identical to…  …=… or =(…, …) 
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 Grammatical category  English  Logical English 

 (a) atomic statement  Mark Twain is Samuel Clemens. 

 (b) atomic statement  Samuel Clemens is Mark Twain. 

 (c) atomic statement  Mark Twain is Mark Twain. 

 (d) atomic statement  Samuel Clemens is Samuel Clemens. 

  Example 13 .  Statements with 3-place predicates

 Grammatical category  English  Logical English 

 names  3, 5, 7  3, 5, 7 

 3-place predicate  …is between… and…  isBetween(…, …, …) 

 btwn(…, …, …) 

 B(…, …, …) 

 atomic statement  5 is between 3 and 7  isBetween(5, 3, 7) 

 btwn(5, 3, 7) 

 B(5, 3, 7) 

 name  Kalamazoo  Kzo, K, k 

 name  Chicago  Chi, Cgo, C, c 

 name  Detroit  Det, D. d 

 atomic statement  Kalamazoo is between Detroit and Chicago  btwn(k, d, c) 

 B(Kzo, Det, Chi) 

 B(k, d, c) 

 In English predicates that take more than 3 names are rare. “… is to … as …. is 

to …” is a 4-place predicate used in statements about proportions, e.g. in trigonom-

etry. The expression “is a term of a 
1
 , a 

2
 , …, a 

n
 ” is an N-place predicate.  

  Example 14 .  Statements with N-place predicates

 Grammatical category  English  Logical English 

 names  3, a 
1
 , a 

2
 , …, a 

n
   3, a 

1
 , a 

2
 , …, a 

n
  

 N-place predicate  is a term of……..  termOf(…..…) 

 T(…..…) 

 statement  3 is a term of a 
1
 , a 

2
 , …, a 

n
   termOf(3, a 

1
 , a 

2
 , …, a 

n
 ) 

 T(3, a 
1
 , a 

2
 , …, a 

n
 ) 

  Exercise 3 .  For a – h, use the logical English abbreviations described below to 
transform the English statements into logical English

 Grammatical category  English  Logical English 

 name  Alice  a 

 name  Bob  b 

 name  2  c 
2
  

 name  3  c 
3
  

 name  5  c 
5
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 Grammatical category  English  Logical English 

 1-place predicate  …is tall  T 
1
 (…) 

 2-place predicate  …is taller than…  I(…, …) 

 2-place predicate  …is identical to…  …=… 

 2-place predicate  …is larger than…  L(…, …) 

 (a ) atomic statement  Alice is taller than Bob. 

 (b) atomic statement  Alice is identical to Alice. 

 (c) atomic statement  2 is larger than 3. 

 (d) atomic statement  3 is larger than 5. 

 (e) atomic statement  5 is larger than 3. 

  Exercise 4 .  For (a)–(q), use the logical English abbreviations described below to 
transform the English statements into logical English. When using ‘f’ and ‘g’ for 
addition and multiplication, use prefix notation. When using ‘+’ and ‘*’ for addi-
tion and multiplication, use infix notation.

 Grammatical category  English  Logical English 

 name  Bob  b 

 name  Alice  a 

 name  Sam  s 

 name  Mark  d 

 1-place predicate  …is tall  T 
1
 (…) 

 2-place predicate  …is taller than…  T 
2
 (…, …) 

 2-place predicate  …is identical to…  =(…, …) or … = … 

 2-place predicate  …is the father of…  fatherOf(…, …) 

 name  2  2 

 name  3  3 

 name  5  5 

 math function name  plus  f 

 math function name  times  g 

 (a) atomic statement  Alice is Alice 

 (b) atomic statement  Alice is identical to Mark 

 (c) atomic statement  Bob is taller than Mark 

 (d) atomic statement  Mark is taller than Bob 

 (e) atomic statement  Sam is tall 

 (f) def. description  2 plus 3 

 (g) def. description  3 plus 2 

 (h) atomic statement  2 plus 2 = 3 times 2. 

 (i) def. description  2 plus (3 plus 5) 

 (j) def. desc.  (2 plus 3) plus 5 

 (k) atomic statement  2 plus (3 times 3) is identical to 

(2 plus 3) times 3 

 (l) def. description  2 times (3 plus 3) 

 (m) def. description  (2 plus 3) times 3 

 (n) def. description  5 * 3 

 (o) def. description  3 + 5 

 (p) atomic statement  (2 + 3) * 5 = (3 + 2) * 5 

 (q) atomic statement  2 + (3 * 5) = (3 + 2 ) * 5 

                  



        Chapter 2   
 Compound Statements       

  This chapter describes logical English for statements that are made from one or 

more simpler statements. Such statements are called compound statements. They 

are formed using words and phrases called statement connectives. Some of those 

connectives are said to be  truth functional . Logical English abbreviations for the 

most important truth functional statement connectives are introduced here. The role 

of parentheses to reduce ambiguity is also discussed. After studying this material 

you should be able to transform truth functional compound statements between 

(ordinary) English and logical English and use parentheses and conventions for 

dropping them.  

  Outline 

  2.1 Truth functional connectives  

  2.2 Statements with multiple connectives  

  2.3 Parenthesis dropping conventions    

   2.1 Truth Functional Connectives  

  Definition 1 .  A  statement connective  is a word or phrase used to construct complex 
statements out of simpler statements.  

  Example 1 .  The statement connective “not” and the statement “John is tall.” can be 
used to construct the more complex statement “John is not tall.” The connective 
“and” can be used with the statements “John is tall” and “Carol is thin.” to form the 
statement “John is tall and Carol is thin.” 

R. Lover, Elementary Logic: For Software Development, 13
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 There are many statement connectives in English. The ones that are impor-

tant here are said to be ‘truth functional’. A statement connective is truth func-

tional if and only if the truth value (true or false) of a compound statement 

made using it can be determined from knowledge of just the truth values of its 

component statements, without knowing anything about their meanings. Truth 

functionality will be discussed in detail in later chapters. In logical English 

symbols are often used in place of truth functional connectives. Several differ-

ent sets of symbols for connectives are in common use. The set that will be used 

here is described below.  

 Approximate English Meaning  Logic Symbol  Name of Symbol 

 not  ~  tilde 

 and  ∧  up wedge 

 inclusive or (i.e. and/or)  ∨  wedge 

 if…then…  →  right arrow 

 if and only if  ↔  double arrow 

 In the following definition L represents the statement on the left, and R repre-

sents the statement on the right. Note that L and R can themselves be atomic or 

compound.  

  Definition 2  .  Suppose L and R represent statements. Then:  

   (a)    ‘Not R’ is called  the negation of R , abbreviated ‘(~R)’.  

   (b)    ‘L and R’ is called  the conjunction of L with R , abbreviated ‘(L ∧ R)’. L and R 

are its  conjuncts .  

   (c)    ‘L or R’ is called  the disjunction of L with R , abbreviated ‘(L ∨ R)’. L and R 

are its  disjuncts .  

   (d)    ‘If L then R’ is called  the conditional of L with R , abbreviated ‘(L → R)’. L is 

called the  antecedent  of the conditional, and R is called the  consequent  of the 

conditional.  

   (e)    ‘L if and only if R’ is called  the biconditional (or the equivalence) of L with R , 

abbreviated ‘(L ↔ R)’. L and R are its  components .     

 Recall that in Chapter 1 atomic statements could be represented in logical 

English by single capital letters followed by a list of names and definite descrip-

tions in parentheses. In this chapter we are not concerned with the names and 

descriptions. Consequently, here both atomic and compound statements will often 

be represented by single capital letters of the alphabet, without lists in parentheses. 

The use of single capital letters without lists in parentheses is not necessary. It is 

simply a space saving measure. Moreover, it is not necessary to use the abbrevia-

tions given above for sentential connectives. In real life, things are usually more 

complicated than in the examples given here and space saving may be less impor-

tant than remembering what abbreviation goes with which English statement. In 

those cases you may be better off using less abbreviated notations.  

AU1AU1
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  Example 2 .  Logical English for connectives  

 Grammatical 

 category  English  Logical English 

 atomic statement  John is asleep.  A 

 S(j) 

 JSleep 

 atomic statement  Today is Monday.  M 

 Mon 

 atomic statement  d = 7.  D 

 D7 

 negation  John is not asleep.  (~A) 

 (not A) 

 (~S(j)) 

 (~JSleep) 

 conjunction  John is asleep and today is Monday.  (A ∧ M) 

 (S(j) ∧ Mon) 

 (A and M) 

 (JSleep ∧ Mon) 

 conditional  If today is Monday then d = 7.  (M → D) 

 (Mon → D7) 

 conditional  If John is asleep then today is Monday.  (A → M) 

 (If A then M) 

 (JSleep → Mon) 

 equivalence  John is asleep if and only if today is Monday.  (A ↔ M) 

 (Jsleep ↔ Mon) 

 Learning to represent the logical structure of compound English statements using 

logical English is best done by seeing many examples and then practicing yourself.  

  Example 3 .  Logical English for different English statements 

 Recall that in English there are usually many different ways to say approximately the 

same thing, i.e. there are many sentences that have approximately the same meaning. 

Consequently, even if two sentences have slightly different meanings, they may be rep-

resented by the same logical English abbreviation, provided that the difference in mean-

ing does not affect truth values. For example, ‘It is raining but I am dry.’ can be 

represented by the same abbreviation as ‘It is raining and I am dry.’ because the slight 

difference in meaning between the two sentences has no affect on how the truth value 

of either depends on the truth value of ‘It is raining’ and the truth value of ‘I am dry’. 

 Suppose that M represents ‘Today is Monday.’ and T represents ‘Taxes are due.’ 

Some sentences that can be represented by ‘(~M)’ are:  

   (a)    Today is not Monday.  

   (b)    It is not the case that today is Monday.  

   (c)    It is false that today is Monday.     
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 Some English statements that can be represented by ‘(M ∧ T)’ are:  

   (a)    Today is Monday and taxes are due.  

   (b)    It is the case that today is Monday and that taxes are due.  

   (c)    Today is Monday even though taxes are due.  

   (d)    Although today is Monday, taxes are due.  

   (e)    Today is Monday but taxes are due.  

   (f)    Today is Monday although taxes are due.     

 Note that ‘Taxes are due and today is Monday’ would be represented by (T ∧ M), 

not by (M ∧ T). The order in which things are said is often important and should 

be preserved where possible, even when the meaning of two differently ordered 

abbreviations is the same. 

 Some English sentences that can be represented by ‘(M ∨ T)’ are:  

   (a)    Today is Monday or taxes are due.  

   (b)    It is the case that today is Monday or that taxes are due.  

   (c)    Either today is Monday or taxes are due or both.     

 In English there are two logically different uses of ‘or’, the inclusive use and the 

exclusive use. Some languages have two separate words for these two meanings. In 

logical English the word ‘or’ and the symbol ‘∨’ are used to represents the inclusive 

use where ‘P ∨ Q’ means ‘P or Q or both P and Q’. The English word ‘xor’ is 

sometimes used to represent the exclusive sense of ‘or’ as in ‘P or Q but not both 

P and Q’. It can also be expressed by ‘(P ∨ Q) ∧ ~(P ∧ Q)’. 

 Some English sentences that can be represented by ‘(M → T)’ are:  

   (a)    If today is Monday then taxes are due.  

   (b)    If today is Monday, taxes are due.  

   (c)    Provided that today is Monday, taxes are due.  

   (d)    Taxes are due if today is Monday.  

   (e)    In case today is Monday, taxes are due.     

 In general, if ‘(M → T)’ is true then we say that M is a sufficient condition for 

T and that T is a necessary condition for M. Some more English sentences that can 

be represented by ‘(M → T)’ are:  

   (f)    Today being Monday is a sufficient condition for taxes to be due.  

   (g)    Taxes being due is a necessary condition for today to be Monday.     

 Some English sentences that can be represented by ‘(M ↔ T)’ are:  

   (a)    Today is Monday if and only if taxes are due  

   (b)    Today’s being Monday is a necessary and sufficient condition for taxes being due.  

   (c)    Today is Monday just in case taxes are due.       
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  2.2 Statements with Multiple Connectives  

 Ambiguity can result when a statement has more than one connective if the scope 

to which each connective applies is not clear. For example, a statement of the form 

‘P and Q or R’ could be understood as ‘P and (Q or R)’ or as ‘(P and Q) or R’. 

These two forms are not equivalent. Parentheses can be used to disambiguate 

otherwise ambiguous statement forms. In logic parentheses are used in the same 

way they are used in mathematics, i.e. work from the inside out. 

  Example 4 .  Statements with multiple connectives 

 English  Logical English 

 Today is Monday.  M 

 Taxes are due.  T 

 Today is Friday.  F 

 Joe is happy.  H 

 Joe is broke.  B 

 (a) Today is Monday or Today is Friday, but not both.  ((M ∨ F) ∧ ~(M ∧ F)) 

 (b) If today is Monday then today is not Friday.  M → (~F)) 

 (c) If today is not Monday then Joe is not happy.  ((~M) → (~H)) 

 (d) Joe is happy if and only if taxes are not due.  (H ↔ (~T)) 

 (e) If Joe is happy and Joe is broke then taxes are not due.  ((H ∧ B) → (~T)) 

 (f)  If Joe is broke then Joe is happy just in case today 

is Friday. 

 (B → (H ↔ F)) 

 (g)  If today is neither Monday nor Friday then Joe 

is  neither happy nor broke. 

 (((~M) ∧ (~F)) → ((~H) ∧ (~B))) 

  Exercise 1 .  For each part, identify the missing grammatical category and use the 
logic notation described below to transform the English statements into logical 
English.  

 Grammatical category  English  Logical English 

 atomic statement  a = 3.  A 

 atomic statement  b = 5.  B 

 atomic statement  a + b = 8.  C 

 (a)  not (a = 3). 

 (b)  not (b = 5). 

 (c)  a = 3 and b = 5. 

 (d)  a = 3 or b = 5. 

 (e)  If a = 3 then b = 5. 

 (f)  a = 3 if and only if b = 5. 

 (g)  If a = 3 or b = 5 then a + b = 8. 

 (h)  not not b = 5. 

 (i)  If a not = 3 and b not = 5 then 

 a + b not = 8. 
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 A single statement expressed in English can be represented in logical English 

in different ways, depending on how much detail is represented. Each of the logi-

cal English representations shown below is correct. Which one to use depends 

upon how much detail is relevant at the time.  

  Example 5 .  Alternative representations  

 English  Logical English representations 

 Jack will leave early if and only if the boss is not here.  L (minimal detail) 

 (J ↔ B) (more detail) 

 (J ↔ (~E)) (yet more detail) 

 (LeaveEarly(j) ↔ (~Here(b)) 

 If transformation from English to logical English is so indeterminate, you 

might wonder why anyone would do it. The short answer is that it is for the 

same reason we do accounting with Arabic numerals and mathematical symbols 

rather than writing it all out longhand in English. Imagine writing “A deposit of 

thirty seven dollars and eighty two cents added to a previous balance of two 

hundred forty dollars and seventeen cents gives a new balance of ….” in order 

to balance your checkbook. The mathematical notation, even though it is not 

unique and it takes time to learn to use, makes doing mathematics much much 

easier. Using logical English notation has similar advantages if you want to 

clearly express and reason correctly about almost anything, including comput-

ing related issues.   

  2.3 Parenthesis Dropping Conventions  

 Because complex English statements can lead to logical English expressions having 

confusingly many pairs of parentheses, it is often helpful to use parenthesis drop-

ping conventions similar to those used in mathematics. Recall for example that in 

mathematics exponentiation has higher precedence than multiplication and division 

and they have higher precedence than addition and subtraction. In other words, 

exponentiation is done before multiplication and division which are done before 

addition and subtraction, so that 3 + 5 * 7 means 3 + (5 * 7) and not (3 + 5) * 7. 

Similarly, 3 2  + 7 * 5 2  means (3 2 ) + (7 * (5 2 )). 

  LE Rule 3.  In addition to the parenthesis dropping conventions of mathematics, the 

following  parenthesis dropping conventions  (also called  precedence rules ) will be 

used for logical English.  

   (a)    ~ has the highest precedence of all.  

   (b)    ∧ , ∨ , →, and ↔ have successively lower precedence.  

   (c)    Matching pairs of parentheses can be removed if doing so does not cause ambi-

guity as to how to restore them. In particular, the outermost pair of parentheses 

may be removed.     
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  Example 6  .  Application of LE Rule 3.  

 Fully parenthesized  With parentheses dropping conventions  Part of LE3 used 

 (a) (~A)  ~A  c 

 (b) (~(~A))  ~~A  c twice 

 (c) ((~A) ∨ (~B))  (~A) ∨ (~B) 

 ~A ∨ ~B 

 c 

 a 

 (d) (((~A) ∨ (~B)) → (~C))  ((~A) ∨ (~B)) → (~C) 

 (~A) ∨ (~B) → (~C) 

 ~A ∨ ~B → ~C 

 c 

 b 

 a 

 (e) (~A) ∨ ((~B) → (~C))  ~A ∨ (~B → ~C) 

 but not ~A ∨ ~B → ~C 

 a 

 not allowed! 

 (f) ((A ∧ B) ∨ C)  (A ∧ B) ∨ C 

 A ∧ B ∨ C 

 c 

 b 

 (g) (A ∧ (B ∨ C))  A ∧ (B ∨ C)  c 

 (h) (A ∨ (B ∨ (C ∨ D)))  A ∨ (B ∨ (C ∨ D)) 

 but not A ∨ B ∨ C ∨ D 

 c 

not allowed

 (i) (((A ∨ B) ∨ C) ∨ D)  ((A ∨ B) ∨ C) ∨ D  c 

 (j) (~(A ∨ (B ↔ C)))  ~(A ∨ (B ↔ C))  c 

 (k) ((((~A) ∧ B) → C) ↔ D)  (((~A) ∧ B) → C) ↔ D 

 ((~A ∧ B) → C) ↔ D 

 (~A ∧ B → C) ↔ D 

 ~A ∧ B → C↔D 

 c 

 a 

 b 

 b 

 (l) (~(A ∧ (B → (C ↔ D))))  ~(A ∧ (B → (C ↔ D)))  c 

  Exercise 2 .  Fully restore parentheses to the following logical English notations. 
Suggestion: work from highest to lowest precedence, in steps.  

   (a)    P ∨ Q ∧ R  

   (b)    P ∧ Q ∨ R  

   (c)    P → Q ∨ R  

   (d)    P ∨ Q → R  

   (e)    (P ∨ Q) ∨ R  

   (f)    P ∨ (Q ∨ R)  

   (g)    ~P → ~Q ∨ R  

   (h)    ~(P → Q) ∨ R  

   (i)    ~P ∧ Q ∨ R → S ↔ T  

   (j)    P ↔ Q → R ∨ S ∧ ~T      

  Exercise 3 .  Use the following statement letters to transform each of the English 
statements below into logical English. Use parenthesis dropping.  

 English  Logical English 

 The program compiled correctly.  P 

 The file was sorted.  S 

 The file was corrupted.  C 

 There was an error in the sort routine.  E 
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 English  Logical English 

 The program ran correctly.  R 

 The error flag was set at line 4008.  F 

 a < b  L 

   (a)    If the program ran correctly then the file was sorted.  

   (b)    If there was an error in the sort routine then the file was not sorted.  

   (c)    If the error flag was set at line 4008 then the file was corrupted.  

   (d)    The program compiled correctly and the file was sorted just in case the program ran correctly 

and there was no error in the sort routine.  

   (e)    A sufficient condition for the file being corrupted is that the error flag was set at line 

4008.  

   (f)    A necessary condition for the file being corrupted is that the error flag was set at line 

4008.  

   (g)    A necessary and sufficient condition for the file being corrupted is that the error flag was set 

at line 4008.  

   (h)    The file was sorted unless the program did not run correctly.  

   (i)    If the program compiled correctly and the file was sorted then the program ran correctly or a 

< b.  

   (j)    a < b if and only if the program did not run correctly or the error flag was not set at line 

4008.  

   (k)    If a < b and the file was sorted correctly then the program ran correctly if and only if there 

was not an error in the sort routine.      

  Exercise 4 .  Use the following statement letters to transform each of the Logical 
English statements below into English.  

 Logical English  English 

 P  The program compiled correctly. 

 S  The file was sorted. 

 C  The file was corrupted.  

 E  There was an error in the sort routine. 

 R  The program ran correctly.  

 F  The error flag was set at line 4008. 

 L 

   (a)    R → P  

   (b)    ~~R  

   (c)    ~P → ~R  

   (d)    F → L  

   (e)    C ∨ E → ~P  

   (f)    P ∧ ~S → C    

 a < b. 

    Exercise 5 .  Use the following statement letters to transform each of the English 

statements below into logical English.  
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 English  Logical English 

 6 is a domain value of the problem.  S 

 1 is a domain value of the problem.  O 

 0 is the solution value of the problem.  N 

 The domain data is sorted small to large.  A 

 The domain data is sorted large to small.  D 

   (a)    If 1 is a domain value of the problem then the domain data is not sorted small to large or large 

to small.  

   (b)    If the domain data is sorted small to large then the domain data is not sorted large to small.  

   (c)    If a domain value of the problem is not 6 and is not 1 then the domain data is not sorted.  

   (d)    If 6 is a domain value of the problem then 1 is not a domain value of the problem.  

   (e)    If the domain data is sorted large to small or small to large then the solution value of the 

problem is 0.  

   (f)    If the domain data is not sorted large to small and not sorted small to large then the solution 

value of the problem is 0.  

   (g)    A sufficient condition for the solution value of the problem to be 0 is that a domain value of 

the problem is 6 if and only if the domain data is sorted small to large.  

   (h)    If a domain value of the problem is 6 then 0 is not the solution value of the problem unless 

the domain data is sorted small to large.      

  Exercise 6 .  Use the following statement letters to transform each of the logical 
English statements below into English.  

 Logical English  English 

 S  6 is a domain value of the problem. 

 O  1 is a domain value of the problem. 

 N  0 is the solution value of the problem. 

 A  The domain data is sorted small to large. 

 D 

   (a)    N ∨ ~N  

   (b)    A ↔ ~D  

   (c)    S → ~O  

   (d)    ~S ∧ ~O → ~N  

   (e)    N → S ∨ O  

   (f)    ~(S ∧ O) → ~S ∨ ~O      

 The domain data is sorted large to small. 

      



        Chapter 3   
 Quantified Statements       

  In this chapter logical variables are introduced as placeholders for names. Similarities 

and differences between logical variables and program variables are discussed. 

Expressions closely related to statements, called conditions, are described. Expressions 

indicating quantity, called quantifiers, are also introduced. After studying this material 

you should be able to:

   1.    Use variables and quantifiers to express conditions, open descriptions, and quan-

tified statements.  

   2.    Transform conditions, open descriptions, and quantified statements between 

English and logical English.      

  Outline 

  3.1 Logical variables  

  3.2 Conditions  

  3.3 Open descriptions  

  3.4 Quantifiers     

  3.1 Logical Variables  

 Unfortunately, the term ‘variable’ is ambiguous. The kind of variables discussed 

here are called  logical variables . 

  Definition 1 .  A  logical variable  is a symbol used as a placeholder, where a name or 
description could otherwise be located. 

 Lower case letters near the end of the alphabet are commonly used as logical 

variables, e.g. u, v, w, x, y, z, and letters from this list with subscripts. Recall that 

lower case letters near the beginning of the alphabet are commonly used as names. 

 A logical variable stands in place of a name or description; it is not itself a name 

or description. Logical variables do not refer to or describe anything. Blank spaces in 
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24 3 Quantified Statements        

forms are paradigm examples of logical variables. Some uses of pronouns in English 

are logical variables. Mathematics and computer science use them extensively.  

  Example 1 .  The blanks in ‘_____ promises to pay $500 to ______.’ are logical 
variables because they are placeholders for names or descriptions. 

 Except for forms that people may fill out, it is usually better to use letters as 

variables rather than using blanks. This is because we often want the same varia-

ble to appear more than once or we want to distinguish one variable from another. 

With ordinary forms we often indicate these requirements by writing small 

descriptions in parentheses under or next to blank spaces. Here is an example. 

 ‘_____ (borrower) promises to pay _______ (lender) ________ (amount) no 

later than _____ (date). If ______ (borrower) does not pay ______ (lender) the 

amount specified by the date specified then the amount owed to lender will be 

twice ______ (amount) and will be due thirty days after _______ (date).’ 

 When such a form is filled in, both instances of the variable with a given label 

are to be replaced by the same name, amount, or date. In most other circumstances, 

labeled blanks would be less convenient than letters. For example, it is easier to 

write ‘If x < y and y < z then x < z’ than ‘If _____ (first number) < _____ (second 

number) and ________ (second number) < ______ (third number) then ______ 

(first number) < _____ (third number).’ 

 Pronouns like ‘he’, ‘she’, or ‘it’ when used in circumstances where no particular 

individual or thing is represented by the pronoun are logical variables. On the other 

hand, used in circumstances where they do indirectly refer to specific individuals 

or things, pronouns are not logical variables. Variables are often used in mathemat-

ics the way pronouns are used in ordinary English.  

  Example 2 .  In ‘If something is > 0 then it is positive.’ both ‘something’ and ‘it’ are 
logical variables. But in ‘George Washington slept here. He was tired.’ the pronoun 
‘he’ is not a logical variable since it refers indirectly to George Washington.  

  Example 3 .  The instances of x in ‘If x > 0 then x + 1 > 1’ are not logical variables 
if x is (perhaps implicitly) a name or description of some particular number, other-
wise the instances of x are logical variables.  

  Exercise 1 .  Identify the variables in the following statements and conditions.

   (a)    In general, if it looks like a duck and walks like a duck then it is a duck.  

   (b)    Someone was absent from this class at least once.  

   (c)    3 < 5 + x.  

   (d)    3 < = x Ù x < = 3.  

   (e)    He who hesitates is lost.  

   (f)    Look before you leap.  

   (g)    x < 5.  

   (h)    x + y = y + x.  
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   (i)    c = a + z.  

   (j)    y = 3 Ú ~y = 3.       

  3.2 Conditions  

  Definition 2 .  A  condition  or  open statement  is an expression which can be obtained 
from a statement by replacing one or more names or descriptions in the statement 
with logical variables. If the term ‘open statement’ is used in place of ‘condition’ 
then a statement is often called a  closed statement . 

 Statements are intended to express claims that are either true or false, e.g. 3 > 1. 

Conditions are neither true nor false, they are true of some things and false of oth-

ers, e.g. the condition ‘x < 1’ is true of 0 and false of 2. Below are some examples 

of statements and conditions that can be constructed from them.  

  Example 4 .  Conditions from English.  

 English Statement  Related Conditions 

 John is tall.  ______ is tall. 

 x is tall. 

 y is tall. 

 John is tall and he is tired.  _____ is tall and _____ is tired. 

 x is tall and he is tired. 

 John is tall and x is tired. 

 x is tall and x is tired. 

 x is tall and y is tired. 

 Three is larger than two.  Three is larger than _____. 

 Three is larger than x. 

 x is larger than two. 

 x is larger than y. 

 x is larger than x 

  Example 5 .  Conditions from logical English.  

 Logical English Statement  Related Conditions 

 isTall(John)  isTall(___) 

 isTall(x) 

 isTall(y) 

 isTall(John) Ù isTired(John)  isTall(____) and isTired(_____) 

 isTall(x) Ù isTired(x) 

 isTall(John) Ù isTired(x) 

 isTall(x) Ù isTired(x) 

 isTall(x) Ù isTired(y) 

 3 > 2  3 > _____ 

 3 > x 

 x > 2 

 x > y 

 x > x 
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 Logical English Statement  Related Conditions 

 A(c) Ù (B(a, b) Ù b = c)  A(x) Ù (B(a, b) Ù b = c) 

 A(x) Ù (B(x, x) Ù x = x) 

 A(x) Ù (B(a, y) Ù y = c) 

 When a variable is replaced by a name or description, each instance of the variable 

is to be replaced by the same name or description. For example in ‘A(x) → B(x, b) 

Ù x = c’ if x is replaced by c the result is ‘A(c) → B(c, b) Ù c = c’. 

 In general, a condition with any number of instances of a single variable is true 

or false of individual things.  

  Example  6 .  The condition A(x) → (B(x, b) Ù b = x) is true or false of individual 
things. It is true of any thing such that, when a name or definite description of that 
thing is substituted for each instance of x, the resulting statement is true. It is false 
of all other things. 

 A condition with any number of instances of two distinct variables is true or 

false of pairs of things. In general, a condition with any number of instances of n 

distinct variables is true or false of n-tuples of things. This issue is discussed again 

in a later chapter where truth conditions for statements are discussed.  

  Example 7 .  A(x) → (B(a, y) Ù y = c) is true or false of pairs of things. It is true of 
any pair of things, (d, e), such that if d is substituted for each instance of x and e is 
substituted for each instance of y then the resulting statement is true. It is false of 
all other pairs of things.  

  Exercise 2 .  Determine which of the following are conditions and which are not. 
Explain why your answer is correct. If an expression is a condition tell whether it 
is true of single things, pairs of things, triples of things, and so on.

   (a)    a = a  

   (b)    x = a  

   (c)    x = x  

   (d)    x = y  

   (e)    A(x, x)  

   (f)    A(x, y)  

   (g)    A(x, b, z)  

   (h)    A(x, x) → B(c)  

   (i)    x > y Ù y > z  

   (j)    maximum(x,y,z) = w      

  Exercise 3 .  For each of the following statements create two different conditions by 
replacing one or more names or descriptions with variables.

   (a)    a < 3 Ù a = 3 Ù a > 3.  

   (b)    If John does not come to work he will be fired.  

   (c)    Jack and Jill went up the hill.  

   (d)    Jack came down and Jill came tumbling after.  
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   (e)    3 + 5 = 5 + 3.  

   (f)    3 > a → ~(a = 3)      

  Exercise 4 .  For each of the following conditions, create two different statements by 
replacing all variables with names or descriptions.

   (a)    x = y Ù y = x  

   (b)    x = y Ù y = z  

   (c)    ____ was absent.  

   (d)    I owe you x.  

   (e)    x > 99 Ù z < 5.  

   (f)    x is the winner.       

  3.3 Open Descriptions  

  Definition 3 .  An  open description  is the result of replacing one or more name sym-
bols in a description with a variable. An open description can be an  open definite 
description , e.g. ‘the largest prime number < x’, or an  open indefinite description , 
e.g. ‘some prime number < x’.  

  Exercise 5 .  For each description below, make two different open descriptions.

   (a)    the present king of France  

   (b)    the result of squaring 4  

   (c)    3 + 5  

   (d)    the positive square root of 16  

   (e)    a person in this room  

   (f)    a square root of 16  

   (g)    some record from file 77  

   (h)    some row of table 8     

 Open definite descriptions are often used to make function notations in mathematics 

and assignment instructions in programs. Here are some examples, using ‘¬’ to 

represent assignment.  

  Example 8 .  Function notations and assignment instructions.  

 Open   Definite Description  Function Notation  Assignment Instruction 

 posSqrt(x)  y = posSqrt(x)  y ¬ posSqrt(x) 

 x + 2y  z = x + 2y  z ¬ x + 2y 

 x 2   y = x 2   y ¬ x 2  

 min(x, y)  z = min(x, y)  z ¬ min(x, y) 

 Just as statements can be made from conditions by replacing all variables with 

names and descriptions, so descriptions can be made from open descriptions by 

replacing one or more variables with names or descriptions. Some examples are 

given below.  
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  Example 9 .  Descriptions from open descriptions.

 Open Description  Related Descriptions 

 the king of _____  the king of France 

 the king of England 

 the king of nothing 

 my father’s _____  my father’s car 

 my father’s father’s car 

 x 2   3 2  

 (77 * 4) 2  

 x + y − z  3 + 5 − (1/3) 

  Exercise 6 .  For each of the following open descriptions, create two different 
descriptions by replacing all the variables with names or descriptions.

   (a)    y + x  

   (b)    is heavier than x  

   (c)    (x 2 ) 3   

   (d)    subroutine77(x, y, z)       

  3.4 Quantifiers  

  Definition 4 .  A  quantifier  is an expression used to indicate what quantity of some-
thing is being discussed. 

 The term ‘quantity’ in this definition is to be taken broadly to include not just 

‘how many’ but also quantities such as ‘all’ and ‘some’. 

 English has many quantifiers, e.g. zero, one, two, … a few, several, many, more 

than 3, fewer than 10, an even number of, all, each, every, some, none, etc. Below 

are some examples of quantifiers used in English statements.  

  Example 10 .  Quantifiers in English statements  

 English Statement  Quantifier 

 All humans are mortal.  All 

 Some humans are mortal.  Some 

 Most crows are black.  Most 

 A few swans are black.  A few 

 None of the records were processed.  None 

 If some of the records were not processed then all of us are in trouble.  Some, all 

 There is an even prime number.  There is 

 Three of the programs were tested.  Three 

 The two most important quantifiers used in logic are ‘all’ (each, every, any, etc.) 

and ‘some’ (there are, there exists, at least one, etc). They are important enough to 

have special symbols associated with them, " for ‘all’ and $ for ‘some’.  
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  Definition 5 .  A  universal quantifier  is an expression used to discuss ‘all’, ‘each’, 
or ‘every one’ of a set of things. An  existential quantifier  is an expression used to 
discuss ‘some’ or ‘at least one’ of some set of things. 

 The logical English notation used for statements with quantifiers takes a bit of 

getting used to. It involves introducing variables and rearranging some parts of 

English. The best way to learn to use quantifier notation is to see many examples and 

then do many exercises. It may seem confusing at first, but eventually it becomes 

quite easy, and it is very useful. For example, it is used extensively in mathematics 

and computer science. It is also used extensively in the rest of this book.  

  Example 11 .  Logical English with a universal quantifier  

 English  Logical English 

 All humans are mortal  "x(if human(x) then mortal(x)) 

 "x(human(x) ® mortal(x)) 

 "x(H(x) ® M(x)) 

 One way to think of ‘All humans are mortal.’ is to think of it as saying of all 

(each, every) thing that if it is human then it is mortal, or if anything is human then 

it is mortal. Each step of the transformation of the English statement to the third logi-

cal English form either emphasizes logically important details or suppresses logi-

cally unimportant details. As a result, the last version is a little shorter than the first, 

and, more importantly, its logical structure is clearer. Brevity and clear logical 

structure are both aids to better communication and better reasoning.  

  Exercise 7 .  Using P(x) to abbreviate ‘x is a program’ and B(x) to abbreviate ‘x has 
bugs’ go through the transformation process described above starting with ‘All 
programs have bugs.’ in place of ‘All humans are mortal.’  

  Example 12 .  Logical English with an existential quantifier  

 English  Logical English 

 Some integers are prime numbers.  $x(integer(x) and prime(x)) 

 $x(I(x) and P(x)) 

 $x(I(x) Ù P(x)) 

 One way to think of ‘Some integers are prime numbers.’ is to think of it as say-

ing that there is (exists) at least one thing which is both an integer and is a prime 

number. Again, each step of the transformation of the English statement to the third 

logical English form either emphasizes logically important details or suppresses 

logically unimportant details.  

  Exercise 8 .  Go through a similar transformation starting with the statement ‘Some 
programs have bugs’.  
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  Example 13 .  Using quantifiers and variables  

 English  Logical English 

 is a program  P 

 is useful  U 

 is bigger than  B 

 A  a (a name) 

 B  b (another name) 

 Everything is a program. 

 Anything is a program. 

 Each thing is a program. 

 All things are programs.  "x(P(x)) 

 Something is a program. 

 Programs exist. 

 There is something that is a program. 

 Some programs exist. 

 At least one thing is a program. 

 Some things are programs.  $x(P(x)) 

 All programs are useful.  "x(P(x) ® U(x)) 

 Some programs are useful.  $x(P(x) Ù U(x)) 

 Some programs are not useful.  $x(P(x) Ù ~U(x)) 

 No programs are useful. 

or

 "x(P(x) ® ~U(x)) 

 ~$x(Px Ù Ux) 

 Everything is useful.  "x(U(x) 

 Nothing is useful. 

or

 ~$x(U(x)) 

 "x(~U(x)) 

 a is bigger than b.  B(a, b) 

 b is bigger than a.  B(b, a) 

 Everything is bigger than b.  "x(B(x, b)) 

 b is bigger than everything.  "x(B(b, x)) 

 Something is bigger than b.  $x(B(x, b)) 

 Note the difference between the following two examples. 

 Not everything is bigger than b.  ~"x(B(x, b)) 

 (i.e. Something is not bigger than b.) 

 Everything is not bigger than b.  "x(~B(x, b)) 

 (i.e. Nothing is bigger than b.) 

 Note the use of two quantifiers and two different  variables in the following examples. 

 Everything is bigger than something.  "x$y(B(x, y)) 

 Something is bigger than everything.  $x"y(B(x, y)) 

 Everything is bigger than everything.  "x"y(B(x, y) 

 Something is bigger than something.  $x$y(B(x, y)) 

 Nothing is bigger than everything.  ~$x"y(B(x, y)) 

 Nothing is bigger than anything. 

or

 ~$x$y(B(x, y)) 

 "x"y(~B(x, y)) 

 If something is bigger than b then a is bigger than b.  $x(B(x, b) ® B(a, b)) 

 a is bigger than b or b is bigger than a.  B(a, b) Ú B(b, a) 

 If something is bigger than b then b is useful.  $y(B(y, b)) ® U(b) 

 Note the use of parentheses in this statement. 

 If something is useful then everything is useful 

or  nothing is useful. 

 $x(U(x)) ® "x(U(x)) Ú 

~$x(U(x)) 

 If a is a useful program then there are useful things.  U(a) Ù P(a) ® $x(U(x)) 
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    Exercise 9 .  Using the same abbreviations, write logical English for the following 
statements.

   (a)    Something is useful.  

   (b)    Something is not useful.  

   (c)    Something is bigger than a.  

   (d)    a is bigger than something.  

   (e)    Everything is bigger than something.  

   (f)    Something is bigger than everything.  

   (g)    a is bigger than everything or a is bigger than nothing.  

   (h)    If every program is useful then some programs are useful.  

   (i)    If some program is useful then all programs are useful.  

   (j)    If a is a useful program then all programs are useful.  

   (k)    If a is a program and a is not useful then not all programs are useful.      

  Exercise 10 .  Using the abbreviations as above transform the following logical 
English notation into English.

   (a)    ~$x(U(x)) → $x(~U(x))  

   (b)    $x(B(x, b)) « B(b, a)  

   (c)    $x(B(x, b)) Ù B(a, b)  

   (d)    "x$y(B(x, y)) Ú $x"y(B(x, y))  

   (e)    ~$x(U(x)) → "x(~U(x))           



        Chapter 4   
 Expressing Arguments       

  This chapter discusses how to find and express arguments and their logical struc-

tures using logical English. After studying it you should be able to:

   1.    Determine whether a passage in English is an argument.  

   2.    Find the premises and conclusion of an argument.  

   3.    Determine whether an argument is inductive or deductive.  

   4.    Express the logical structure of an argument using logical English.      

  Outline 

  4.1 Arguments  

  4.2 Deductive and inductive arguments  

  4.3 Some practical suggestions  

  4.4 Expressing the logical structures of arguments     

  4.1 Arguments  

  Definition 1 .   Reasoning  is the process of moving from some statements (called 

premises) to other statements (called conclusions) because the reasoner believes 

that if the premises were true they would provide support, evidence, or reasons for 

believing that the conclusions would also be true. 

 Reasoning is to be contrasted with moving from statement to statement by other 

means or for other purposes, e.g. by means of free association, or in order to rhyme, 

to intimidate, to stir emotions, to persuade, to explain, to describe, and so on.  

  Definition 2 .  An  argument  is one or more statements used to express, describe, or 

record reasoning. A  simple argument  is a collection of statements such that all but 

one of them, called  premises , are offered as evidence for the other one, called the 

 conclusion . A simple argument has exactly one conclusion, although it may have 
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many premises. A  compound argument  is a collection of simple arguments organ-

ized so that the conclusions of some of its component arguments are premises of 

other component arguments. Often there is one final grand conclusion that the col-

lection of component arguments is organized to support.  

  Example 1 .  Since today is Monday, tomorrow must be Tuesday. 

 This is a simple argument with only one premise, “today is Monday” and one 

conclusion, “tomorrow must be Tuesday.”  

  Example 2 .  Since today is Monday, tomorrow must be Friday. 

 This example has the same premise as Example 1, but its conclusion is “tomor-

row must be Friday.” It was chosen to emphasize the fact that an argument does not 

have to be a good argument to be an argument.  

  Example 3 .  It will probably rain here soon, since the sky is dark and it is raining just west 

of here. 

 Example 3 has two premises “the sky is dark” and “it is raining just west of 

here.” Its conclusion is “it will probably rain here soon.” This example illustrates 

two points, first that an argument can have several premises and second that the 

conclusion of an argument is not always stated last.  

  Example 4 .  A = 3. B = 5. Therefore A + B = 8. 

 Example 4 was chosen to emphasize that an argument may be expressed by 

means of several sentences rather than just one sentence.  

  Example 5 .  Since the file is sorted, it must be in ascending or descending order. It 

is not in ascending order. Hence it is in descending order. 

 Unlike Examples 1–4, this argument is compound. Its first component argument 

has “the file is sorted” as premise and “it must be in ascending or descending order” 

as conclusion. The second has two premises. Its first premise is the conclusion of 

the first argument. Its second premise is “It is not in ascending order.” Its  conclusion 

is “it is in descending order.” 

 We all understand that some arguments are better than others. Examples 1, 4, 

and 5 above are very good arguments, while Example 3 might be moderately good 

and Example 2 is a very bad one.   

  4.2 Deductive and Inductive Arguments  

  Definition 3 .  An argument is said to be  deductive  if and only if it expresses the 

claim that the truth of its premises would guarantee the truth of its conclusion, 

i.e. that its premises and conclusion are related so that if its premises were true 
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then its conclusion would also have to be true. An argument that is not deductive 

is said to be  inductive . 

 Notice that whether an argument is deductive or inductive does not depend on 

whether its premises or conclusion are true or false and it does not depend on how 

good the argument is. It depends on its author’s indicated belief about the strength 

of the connection between the premises and the conclusion. Also, author’s beliefs 

are often difficult to determine. Usually the only clues available are the context of 

the argument and the way the conclusion is expressed. Examples 1, 2, 4, and 5 are 

deductive while Example 3 is inductive. This book is concerned only with criteria 

and methods that work reliably on deductive arguments.   

  4.3 Some Practical Suggestions  

 To make practical use of these concepts requires certain abilities. The first is being 

able to recognize statements and distinguish them from instructions, questions, 

wishes, etc. 

 The second is being able to recognize arguments and distinguish them from 

mere lists of assertions, conditional statements, stories, etc. The task of recognizing 

arguments is complicated by the fact that some arguments are compound, so the 

conclusion of one component argument is a premise in some other component argument. 

As a result, the same statement may be both a premise (of one argument) and a 

conclusion (of another argument). Fortunately, there are phrases such as “we reason 

as follows” and “consider the following” which usually indicate the presence of an 

argument. In other cases the context suggests that arguments are present, as 

in mathematics, logic, and computer science books. In many cases arguments are 

recognized by first discovering conclusions. 

 There are words and phrases such as “since”, “is implied by”, “because”, and “as a 

result of the fact that”, which are usually followed by the premises of an argument. They 

are called  premise indicators . There are also  conclusion indicators  such as “therefore”, 

“we infer that”, “consequently”, “so it must be that”, “probably”, and “it is likely that” 

which are usually followed by the conclusion of an argument. In looking for arguments 

it is also worth knowing that some premises and some conclusions are  implicit , i.e. 

understood to be part of the argument but not explicitly stated. Definitions of words and 

commonly known facts such as the order of days of the week are often implicit premises 

in ordinary arguments. Example 1 probably has something like “The day after Monday 

is Tuesday” as an implicit premise. An extreme example is discussed below. 

  Example 6 .  If he is telling the truth then I am a monkey’s uncle. 

 Analysis: This is an argument with an implicit premise and an implicit conclusion.

    Premise1: If he is telling the truth then I am a monkey’s uncle.  

   Premise2: I am not a monkey’s uncle. (implicit)  

   Conclusion: He is not telling the truth. (implicit)    



36 4 Expressing Arguments        

 Being able to distinguish between deductive arguments and inductive arguments 

is another important skill since the criteria and rules of deductive logic do not work 

reliably with inductive arguments. Sometimes this can be done by considering the 

context of the argument. Mathematical arguments are usually deductive while argu-

ments about the weather tomorrow are usually inductive. In addition, some conclu-

sion indicators such as “therefore,” “consequently,” and “it must be that” are 

generally followed by the conclusion of a deductive argument. Other conclusion 

indicators such as “probably” and “it is likely that” are generally followed by the 

conclusion of an inductive argument. 

 Examples 7–12 below show uses of the suggestions just discussed. Each passage 

is analyzed with respect to the following issues:

   1.    Is the passage an argument or a collection of arguments?  

   2.    If it is an argument or collection of arguments, what are the premises and the 

conclusion of each argument?  

   3.    If it is an argument, is it deductive or inductive?      

  Example 7 .  I have tested this program with hundreds of test cases and it worked 

correctly in each case. Hence, this program is correct. 

 Analysis: This is an argument because the first statement is given as a reason for 

believing the second. Moreover, “hence” is usually used as a conclusion indicator. 

The premises and conclusion of this argument are:

    Premise1: I have tested this program with hundreds of test cases.  

   Premise2: It worked correctly in each case.  

   Conclusion: This program is correct.    

 You could also say that this argument has a single premise consisting of the 

conjunction of the two listed above, but it is usually clearer if premises that are 

conjunctions are broken into their component parts. This argument is deductive 

because there is no uncertainty expressed about the truth of the conclusion.  

  Example 8 .  The error is in subroutine X or subroutine Y. If the error were in sub-

routine Y then someone would probably have reported a problem with it by now. 

Since no one has reported a problem with subroutine Y yet, the problem must be in 

subroutine X. 

 Analysis: This is clearly an argument because some statements are given as 

reasons for believing another. Using “P” with or without subscripts to indicate 

premises and using “C” to indicate a conclusion the argument can be expressed 

thus.

    P 
1
 : The error is in subroutine X or subroutine Y.  

   P 
2
 :  If the error were in subroutine Y then someone would probably have reported 

a problem with subroutine Y.  

   P 
3
 : No one has reported a problem with subroutine Y.  

   C: The problem must be in subroutine X.    
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 Despite the word “probably” in one of the premises, the word “must” in the 

conclusion shows that this argument is deductive. There is no uncertainty expressed 

about the truth of the conclusion. The use of “probably” in a premise and “must” 

in the conclusion suggests that this argument is not correct.  

  Example 9 .  Since the rest of the program works perfectly, if there is a problem with 

the program it must be in the new procedure. 

 Analysis: This is an argument, because “since” is a premise indicator and the first 

statement is given as a reason to believe the second.

    P: The rest of the program works perfectly.  

   C: If there is a problem with the program it must be in the new procedure.    

 It is deductive.  

  Example 10 .  The program used to work perfectly. Then you modified it. Now it 

doesn’t work perfectly. You ought to work on it some more. 

 Analysis: Clearly an argument.

    P 
1
 : The program used to work perfectly.  

   P 
2
 : Then you modified it.  

   P 
3
 : Now it doesn’t work perfectly.  

    C: You ought to work on it some more.    

 Clearly deductive.  

  Example 11 .  FCOUNT must be = 0 or > 0 at line 20. If FCOUNT > 0 at line 20 then 

FILE5 will be opened or a file-not-found message will be sent just in case the trace 

flag is set. 

 Analysis: This is not an argument. It is a mere collection of statements.    None of the 

statements is offered as evidence for any other one.     

  Example 12 .  FCOUNT must be = 0 or > 0 at line 20. If FCOUNT > 0 at line 20 

then FILE5 will be opened or else a file-not-found message will be sent just in case 

the trace flag is set. The trace flag cannot be set if FCOUNT = 0 at line 20. So if 

FCOUNT = 0 at line 20 and FILE5 is not opened and a file-not-found message is 

not sent then the trace flag is not set. 

 Analysis: An argument. The word “so” as used here is a conclusion indicator.

    P 
1
 : FCOUNT must be = 0 or > 0 at line 20.  

   P 
2
 :  If FCOUNT > 0 at line 20 then FILE5 will be opened or else a file-not-

found message will be sent just in case the trace flag is set.  

   P 
3
 : The trace flag cannot be set if FCOUNT = 0 at line 20.  

   C: If FCOUNT = 0 at line 20 and FILE5 is not opened and a file- not-found 

message is not sent then the trace flag is not set.    
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 Clearly deductive.  

  Exercise 1 .  For each passage below, analyze the passage in the way Examples 7–12 

were analyzed. Give reasons for your claims.

   (a)    If today is Friday then today is payday.  

   (b)    If today is Friday then today is payday. Moreover, today is Friday. Hence, today 

is payday.  

   (c)    If x were 5 at line 2,020 then the program would have crashed, and it did. So 

probably x was 5 at line 2,020.  

   (d)    If the program was run yesterday then a run log entry for it would have been 

made. No run log entry for it was made. Moreover, if the program was not run 

yesterday then the records in it are not current. Hence the records in it are not 

current.       

  4.4 Expressing the Logical Structures of Arguments  

 The overall structure of a simple argument is described by identifying its 

premises and its conclusion. In the previous examples this was done by prefixing 

premises with P and conclusions with C. Another commonly used format is to 

list premises above the conclusion and draw a line between the premises and 

the conclusion. 

  Example 13 .

 FCOUNT must be = 0 or > 0 at line 20. 

 If FCOUNT > 0 at line 20 then FILE5 will be opened or else a 

file-not-found message will be sent just in case the trace flag is set. 

  The trace flag cannot be set if FCOUNT = 0 at line 20.  

 If FCOUNT = 0 at line 20 and FILE5 is not opened and a file- 

not-found message is not sent then the trace flag is not set. 

 If the premises are very short, more than one premise may be written on a single line.  

  Example 14 .

  a = 3, b = 4, c = 5  

 c > a + b 

 If the premises or conclusion are long, as they are in Example 13 then logical 

English abbreviations may help bring out the logical structure of the argument.  

  Example 15 .

 FC = 0 Ú FC > 0 

 FC > 0 → (F5Open Ú (NotFoundMsg) « TraceSet)) 
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  FC = 0 → ~TraceSet  

 ((FC = 0) Ù ~F5Open Ù ~NotFoundMsg) → ~TraceSet 

 If an argument is compound then more elaborate formats are used. One common 

style is vertical, as in Example 16. This is the way many proofs in mathematics 

books are organized except that underlines are replaced by conclusion indicators 

such as “therefore” and “hence.”  

  Example 16  .

 Prime(x)  Premise 

  Even(x)   Premise 

 x = 2  Conclusion of first argument, premise of third 

 x = b  Premise 

  b = a   Premise 

  x = a   Conclusion of second argument, premise of third 

 a = 2  Conclusion of third argument 

 A clearer way to represent this structure resembles a tree.  

  Example 17 .  

  Prime(x), Even(x)  x = b, b = a  

   x = 2 x = a  

   a = 2 

 Notice that the line under “Prime(x), Even(x)” does not extend to “x = b.” That 

is because the argument from x = b and b = a to x = a does not depend on Prime(x) 

or Even(x). Separate arguments get separate underlines.  

  Exercise 2 .  Use logical English to express the structure of each of the argu-

ments below. If the argument is simple then use the format shown in Examples 

13 and 14. If the argument is compound then use the tree structure shown in 

Example 17.

   (a)    Since today is Monday, tomorrow must be Tuesday.  

   (b)    Since today is Monday, tomorrow must be Friday.  

   (c)    It will probably rain here soon, since the sky is dark and it is raining just west 

of here.  

   (d)    A = 3. B = 5. Therefore A + B = 8.  

   (e)    Since the file is sorted, it must be in ascending or descending order. It is not in 

ascending order. Hence it is in descending order.  

   (f)    If he is telling the truth then I am a monkey’s uncle.  

   (g)    I have tested this program with hundreds of test cases and it worked correctly 

in each case. Hence, this program is correct.  

   (h)    The error is in subroutine X or subroutine Y. If the error were in subroutine Y 

then someone would probably have reported a problem with it by now. Since 
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no one has reported a problem with subroutine Y yet, the problem must be in 

subroutine X.  

   (i)    a*b > 0 because either a > 0 and b > 0 or else a < 0 and b < 0. Since c < 0 and a*b 

> 0, it follows that c*a*b < 0. And since d is also < 0, d*c*a*b must be > 0.  

   (j)    Since a = 1 and b = 2, a + b = 3. Moreover, since c = 4 and d = 5, c + d = 9. In 

addition, e = 6, so c + d + e = 15, Hence a + b + c + d + e = 18.          



        Chapter 5   
 Defining Data Structures       

     This chapter is about using logical English to define and describe data  structures. 

It begins with a description of the identity relation. This relation is used in 

defining all data structures. The second part shows how logical English can be 

used to define and describe sets, bags, sequences, relations, functions, and other 

data types. These examples also show the way mathematical notation is used 

with logical English. The presentation in this part is brief because you are 

assumed to be familiar with much of it. After studying this chapter you should 

be able to:

   1.    Describe the identity relation and its more important properties.  

   2.    Use logical English to describe sets, bags, sequences, relations, functions, and 

other data structures.  

   3.    Read much of the computer science literature that uses logical English and 

mathematical notation.     

   Outline 
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  5.1 Properties of the Identity Relation  

  5.1.1 Identity is Reflexive, Symmetric, and Transitive 

  Definition 1 .  We say that b and c are  identical  if and only b and c refer to (name 

or describe) the same thing. 

 For example, 8 is identical to 3 + 5 because “8” and “3 + 5” refer to the same 

number. While identity is a two place predicate we do not usually represent the 

claim that b is identical to c using a notation like Iden(b, c). Identity has a special 

symbol of its own and a different format (called infix notation), so that saying that 

b is identical to c is usually done using the notation “b = c.” The terms “equal” and 

“identical” are often used to mean the same thing. Three important facts about 

identity are listed below. Here x, y, and z are intended to be place holders for names 

or legitimate definite descriptions.  

   1.    ∀x(x = x) (= is reflexive)  

   2.    ∀x∀y(x = y → y = x) (= is symmetric)  

   3.    ∀x∀y∀z(((x = y) ∧ (y = z)) → x = z) (= is transitive)       

  5.1.2 Leibniz’s Law 

 Another property of the identity relation is that if P is any 1-place predicate then

   4.    ∀x∀y((x = y ∧ P(x)) → P(y)) (Leibniz’s law)     

 It is important to be clear about what this law means. It means that if x and y refer 

to the same thing and if the thing referred to by x has property P then the thing 

referred to by y has that same property. Once you understand it, this law may seem 

obviously true. And as long as the properties involved are true or false of the thing 

x and y both refer to, independent of how they are named or described, Leibniz’s 

law applies. This is normally the case, for example, in mathematics and computer 

science. Such contexts are said to be  extensional . Not all contexts are extensional 

however. For example, it is a fact that 

 Mark Twain = Samuel Clemens. 

 But suppose I did not know this. Then I could perfectly well believe that Mark 

Twain wrote  The Adventures of Tom Sawyer  and not believe that Samuel Clemens 

wrote  The Adventures of Tom Sawyer . Moreover, if my belief that Mark Twain 

wrote  The Adventures of Tom Sawyer  counts as a property of Mark Twain then, 

since Mark Twain = Samuel Clemens, Leibniz’s law requires that I must also 

believe that Samuel Clemens wrote  The Adventures of Tom Sawyer.  But I don’t. 

Contexts like this that involve what people believe, hope, fear, etc. all give rise to 

apparent counterexamples to Leibniz’s law. There are various ways around this 

problem, such as insisting that my belief that Mark Twain wrote  The Adventures of 
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Tom Sawyer  is not a property of the person sometimes called Mark Twain, it is a 

property of me. Only extensional contexts, in which such confusing issues do not 

arise, will be considered here.   

  5.2 Defining Data Structures  

 A data structure is defined by specifying the type of data it is composed of, how 

this data is organized, the basic operations that are allowed to be performed on that 

data, and the relations that must be maintained when those operations are performed. 

No operations other than those that can be defined in terms of the basic operations 

are allowed for that data type. 

  5.2.1 Sets 

 Logical English is often used to express facts about sets of things. The notation and 

concepts of set theory are fundamental to mathematics and computer science. 

Intuitively, a set is a collection of things. For example, the set of all positive integers 

or the set of all programs currently running on a particular computer. 

 A set is determined by its elements. For example, each positive integer is an ele-

ment of the set of all positive integers. The elements of a set are usually indicated 

in one of two ways, either by listing all the elements of the set, or by describing a 

condition which is true of all and only the elements of the set. In either case it is 

common to use curly brackets (also called set brackets), “{‘and’},” to indicate the 

beginning and end of a set description. For example, each of the notations below 

describes the same set.

 {1, 3, 2, 4}  List notation 

 {x|x is an integer and x > 0 and x < 5}  Condition notation 

 The symbol “|” in condition notation can be read “such that” or “where.” 

 The elements of the set above are 1, 3, 2, and 4. If S = {1, 3, 2, 4} then the fact 

that 1 is an element of S would normally be written “1 ∈ S.” The fact that 5 is not 

an element of S could be written “not 5 ∈ S” (or “5 ∼∈ S”). In logical English it is 

customary to use uppercase letters to represent sets and lower case letters to 

 represent elements of sets. 

  Definition 2 .  If A and B are sets then  A is identical to B  just in case they have the 

same elements, regardless of the order in which the elements are listed or the 

number of times an element is listed. In logical English this definition can be 

expressed thus.

   A = B ↔ ∀x(x ∈ A ↔ x ∈ B)     

  Example 1 .  {1, 2, 3, 4} = {1, 3, 2, 4} = {1, 2, 3, 2, 4, 1} = {1, 1 + 1, 1+ 2, 4}  
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  Definition 3 .  A set which has no elements is called a null set or empty set. Since 

all empty sets have exactly the same elements they are all identical, hence there is 

only one null set. One common notation for the null set is {}, another is ø. In logical 

English it could be defined thus. 

 ø = {x|∼x = x}  

  Definition 4 .  If A and B are sets then A is a subset of B just in case every element 

of A is also an element of B. The symbol “⊂” is normally used to represent the 

subset relation. In logical English this definition can be expressed by:

   A ⊂ B ↔ ∀x(x ∈ A → x ∈ B)     

  Example 2 .  {1, 3} ⊂ {1, 2, 3}, but not {1, 2, 3} ⊂ {1, 2}. 

 If A ⊂ B then B may or may not be a subset of A. For example, {1, 3, 5} ∼⊂ {3, 5}. 

On the other hand {1, 5} ⊂ (5, 1) and {5, 1} ⊂ {1, 5}. In general, if A ⊂ B and 

B ⊂ A then A = B and  vice versa.  
 Various operations on sets are defined. The most useful of them are intersection, 

union, complement, and product.  

  Definition 5 .  If A and B are sets then  the intersection of A and B  is the set of 

elements they have in common. The symbol “∩” is used for intersection and it is 

common to express this definition as follows.

   A ∩ B = {x | x ∈ A ∧ x ∈ B}     

  Example 3  .    {3, 5, 7} ∩ {2, 3, 4, 7} = {3, 7}     

  Definition 6 .  If A and B are sets then  the union of A and B  is the set of all elements 

that are in one or both of the sets. The symbol “∪” is normally used to represent set 

union. Hence,

   A ∪ B = {x | x ∈ A ∨ x ∈ B}  

  {1, 3, 5} ∪ {2, 3, 4} = {1, 2, 3, 4, 5}     

  Definition 7 .   The complement of B in A  is the set of elements of A that are not in B. 

The symbol “-” is often used for complement. Hence,

   A - B = {x | x ∈ A ∧ ∼ x ∈ B}     

  Examples 4  .    {1, 3, 5} - {2, 3, 4} = {1, 5} and {2, 3, 4} - {1, 3, 5} = {2, 4}     

  Definition 8 .   The cross product of A and B  is the set of ordered pairs of elements 

with the first element of the pair in A and the second element of the pair in B. The 

symbol × is usually used to indicate this operation, so,
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   A × B = {<x, y> |x ∈ A ∧ y ∈ B}     

  Example 5  .    {2, 4} × {1, 3, 5} = {<2, 1>,<2, 3>,<2, 5>,<4, 1>,<4, 3>,<4, 5>}     

  Exercise 1 .  Suppose A = {2, 4, 6, 8}, B = {1, 3, 5, 7}, and C = {1, 2. 3}.   Use list 

notation to express the result of performing the following operations.

    (a)    A ∪ B  

   (b)    A ∩ B  

    (c)    A ∩ C  

   (d)    A − B  

    (e)    A − C  

    (f)    A × C  

   (g)    C × A      

  Exercise 2 .  Write each of the following using logical English notation. Use I(x) to 

abbreviate the condition that x is an integer, P(x) abbreviate the condition that x is 

a positive integer, and so on.

   (a)    The set of all integers.  

   (b)    The intersection of the set of all positive integers and the set of all negative integers.  

   (c)    b is an element of C.  

   (d)    x is an element of the intersection of B with C if and only if x is an element of 

B and x is an element of C.  

   (e)    The ordered pair <b, c> is an element of the product of sets F and G.  

   (f)    If A is a subset of B and B is a subset of a then A is identical with B.      

  Exercise 3 .  Use English to express the meanings of the following expressions of 

set theory.

   (a)    b ∈ G  

   (b)    B ∈ B ∩ C  

   (c)    B = C ↔ (B ⊂ C) ∧ (C ⊂ B)  

   (d)    ((x ∈ B) ∧ (B ⊂ C)) → x ∈ C  

   (e)    <a, b> ∈ B × C  

   (f)    ((∼(B ⊂ C)) ∨ (∼(C ⊂ B))) ↔ (∼(B = C))       

  5.2.2 Bags 

 Bags are like sets except that multiple instances of the same element are counted as 

many times as they occur, but as with sets, the order in which they are given does 

not matter. Bags are also called multisets. There is no standard notation for bags. 

Here set brackets with asterisks, {* and *}, will be used. Recall that two sets are 

identical just in case they have the same elements. Similarly, two bags are identical 

just in case they have the same elements and identical elements occur the same 

number of times. Hence:  
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   {*1, 2, 3, 2*} = {*2, 2, 1, 3*} = {*1, 2, 1+1, 3*} but 

 not {*1, 2, 3, 2*} = {*1, 2, 3*}.    

 Bags are often used to represent statistical data such as the ages of people in a 

sample. In such a case two people of the same age count as two instances of that 

age, although the order in which age data is represented is irrelevant. 

 While sets are implemented in a few programming languages, the implementation 

is usually feeble. Bags are almost never implemented. Most programmers represent 

sets and bags using arrays. Sets are represented by writing programs that ignore 

multiple instances of the same value in an array and ignore the order in which they 

appear. Bags are implemented by writing programs that count the number of 

instances of each value but ignore the order in which they appear.  

  5.2.3 Sequences 

 Sequences are like bags except that with sequences, order also counts. The ele-

ments of a sequence are often called  terms  of the sequence. The terms of a sequence 

are normally “indexed” by positive integers, so that the first term of a sequence is 

called t 
1
 , the second term is called t 

2
 , and so on. The integer 1 is called the index of 

t 
1
 , 2 is called the index of t 

2
 , and so on. Most programming languages do not have 

the ability to express indices as subscripts Instead they write indices in square 

brackets as with x[1], x[2], and so on. 

  Definition 9 .  The shortest sequences are called  null sequences , they are sequences with 

zero terms. The next shortest are  singleton sequences , they have a single term. The next 

shortest sequences are called  ordered pairs , they have two terms. Next are ordered triples, 

quadruples, and so on. A  finite sequence  has n terms, for some nonnegative integer, n. An 

 infinite sequence  has at least as many terms as the sequence of nonnegative integers.  

  Definition 10 .  Two sequences are said to be identical just in case they have the same 

number of elements and elements in corresponding positions are all identical.  

  Examples 6  .

   <1, 2, 1, 3> = <1, 1+1, 1, 3> but  

  not (<1, 2, 1, 3> = <1, 2, 3>) and  

  not (<1, 2, 1, 3> = <1, 1, 2, 3>)    

 Ordered pairs are especially important, since they are what relations and functions 

are made from. In particular notice that

   <a, b> = <c, d> ↔ a = c ∧ b = d.    

 There are several commonly used notations for sequences in mathematics. 

Examples of three of the most common are shown below. Each describes the same 

sequence.
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 e 
1
 , e 

2
 , e 

3
 , e 

4
   Comma separated notation 

 < e 
1
 , e 

2
 , e 

3
 , e 

4
 >  Angle bracket notation 

 [e 
1
 , e 

2
 , e 

3
 , e 

4
 ]  Square bracket notation 

  Exercise 4 .  For each pair of sequences below determine whether they are identical 

considered as sequences, as bags, and as sets.  

 (a) <1, 1+1, 1+1+1>  <1, 2, 3> 

 (b) <1, 1+1, 1+1+1>  <1, 3, 2> 

 (c) <1, 1+1, 1+1+1>  <1, 2, 2, 3> 

 (d) <1, 2, 1+1+1>  <1, 2, 1, 3> 

 (e) <1, 2, 3>  <3, 2, 1> 

 (f) <3, 1, 2, 3>  <1+1, 3, 1, 3> 

  5.2.4 Relations 

  Definition 11 .  In set theory a relation is a set whose elements are ordered pairs of 

things. The things can be of any kind. In logical English this could be expressed by 

 R is a relation ↔ R is a set and ∀x(x ∈ R → ∃y∃z(x = < y, z>)) 

 Every 2-place predicate determines a relation, called the extension of that rela-

tion. If the extension of a predicate P is called S 
P
  then 

 S 
P
  = {<x, y> | P(x, y) is true} 

 However, there are more sets of ordered pairs than there are predicates in any ordi-

nary language. so not every relation is definable in this way. On the other hand, the 

relations we can easily talk about in a specific language are definable in this way.  

  Definition 12 .   The domain of a relation  is the set of all things that are first terms 

of the elements (ordered pairs) of the relation and  the range of a relation  is the set 

of all things that are second terms of the elements of the relation. 

 For example, the relation {<1, 2>, <3, 4>, <5, 2>} has {1, 3, 5} as its domain 

and {2, 4} as its range. If DOM(R) is used to represent the domain of a relation, 

R, and RNG(R) is used to represent its range then these definitions can be 

expressed as 

 DOM(R) = {x | ∃y(<x, y> ∈ R} 

 RNG(R) = {y | ∃x(<x, y> ∈ R}  

  Example 7 .  The identity relation, =, between names in a given language. The = relation 

is the set of all ordered pairs of names in the language where both names are names of 

the same thing. In English for example, <Mark Twain, Samuel Clemens> is an element 

of the = relation, but <Mark Twain, George Washington> is not. The domain and range 

of = are the same, they are the set of names in the given language.  
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  Example 8 .  The less than relation, <, among positive integers, using P(x) to 

represent the condition “x is a positive integer.”  

   < = {<x, y> | P(x) ∧ P(y) ∧ x < y}  

  <3, 4> ∈ < and <3, 77> ∈ <. but <4, 3> is not ∈<.  

  DOM(<) = {x | P(x)}  

  RNG(<) = {x | P(x) ∧ x > 1}    

 The reason that 1 ∼∈ RNG(<) is that no positive integer is less than 1.  

  Example 9 .  The relation cityIn defined below.

   cityIn = {<x, y> | x is a city ∧ y is a state ∧ x is a city in state y}  

  <Kalamazoo, Michigan> ∈ cityIn but  

  <Boston, Michigan> ∼∈ cityIn.     

  Exercise 5 .  For each of the following determine whether the statement is true or false, 

and say why.  

   (a)    <3, 5> ∈ <  

   (b)    <3, 3 + 2> ∈ <  

   (c)    <3, 3> ∈ <  

   (d)    <1, 2> ∈ <  

   (e)    <1, 1 + 1> ∈ <  

   (f)    <1 + 1, 2> ∈ <      

  Exercise 6 .  For each of the following, determine the domain and range of the 

relation, and express each using logical English. Use I(x) to represent the property 

of being an integer, R(x) to represent the property of being a rational number, and 

P(x) to represent the property of being a person. Invent and explain your own 

notation for the less than relation, the parent of relation, and so on.

   (a)    The less than relation between integers.  

   (b)    The less than relation between rational numbers.  

   (c)    The “is a parent of” relation between people.  

   (d)    The “is a child of” relation between people.  

   (e)    The “likes” relation between people.  

   (f)    The “dislikes” relation between people.  

   (g)    The “is taller than” relation between basketball players.  

   (h)    The “is shorter than” relation between college professors.       

  5.2.5 Functions 

  Definition 13 .  A  function  is a relation with the property that no two ordered pairs 

of the relation have the same first element and different second elements. Functions 

are often called  operations . 
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 Some 2-place predicates determine functional relations, i.e. functions. Those 

functions are called extensions of the corresponding predicates. If the extension of 

a functional predicate P is called F 
P
  then

   F 
P
  = {<x, y> | P(x, y) is true}    

 However, there are more sets of ordered pairs that are functions than there are 

functional predicates in any ordinary language. So not every function is definable 

in this way, but the ones we can easily talk about in such a language are.  

  Definition 14 .  If F is a function then the  function notation  y = f(x) can be used 

in place of <x, y> ∈ F, i.e.

   y = f(x) ↔ <x, y> ∈ F    

 If F is a functional relation then f(x) is an open definite description and if b = f(a) 

then <a, b> ∈ F and f(a) is a definite description of b. 

 The use of an upper case letter to denote a functional relation expressed as a set 

of ordered pairs and the corresponding lower case letter to denote that relation 

expressed in equational form is just a convention used in this book. Other notations 

are common in other places.  

  Example 10  .

   (a)     The < relation is not a functional relation since <1, 2> and <1, 3> are both ele-

ments of <.  

   (b)     The relation F(x, y) where y is the (biological) father of x is a functional rela-

tion since each person has only one biological father. So y = f(x) could also be 

used to describe this functional relation.  

   (c)     The relation  S(x, y) where y is a son of x is not a functional relation since many 

different sons could have the same father, so S(x) (son of x) would not uniquely 

refer to one person.  

   (d)     The relation posSqrt, where<x, y> ∈ posSqrt if and only if x and y are numbers 

and y is the positive square root of x, is a function.  

   (e)     The relation sqrt, where <x, y> ∈ sqrt if and only if y is a square root of x, 

is not a functional relation, since both <16, 4> and <16, -4> are elements of 

sqrt.  

   (f)     The “one more than” (successor) relation, S, is a functional relation since <x, 

y> ∈ S if and only if y is one more than x, i.e. y = x + 1. So s(x) = x + 1.     

 An ordered triple of things can be described as an ordered pair whose first term 

is an ordered pair, e.g. <1, 3, 5> can be thought of as <<1, 3>, 5>. Similarly, an 

ordered quadruple can be thought of as an ordered pair whose first term is an 

ordered triple, e.g. <1, 2, 3, 4> can be thought of as <<<1, 2>, 3>, 4>. In general, 

an ordered n-tuple can be thought of as an ordered pair whose first term is an 

ordered (n-1)-tuple. As a result, functions with any number of inputs (also called 

arguments) are included in the definition above.  
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  Example 11 .  The addition function, called plus, defined on numbers is the set of 

ordered pairs <<x, y>, z> such that z is the sum of x and y. so

   plus = {<<x, y>, z> | z = x + y}.    

 Hence

   plus(<x,y>, z) if and only if z = x + y.    

 Since functions are special kinds of relations and each relation has a domain and 

a range, it follows that each function has a domain and a range.  

  Examples 12  .

   (a)     The domain of the positive square root function, posSqrt, is the set of all num-

bers that have positive square roots, i.e. it is the set of all nonnegative numbers. 

The range of posSqrt is the set of all numbers that are positive square roots of 

some number, i.e. the set of all nonnegative numbers.  

   (b)     The domain of the addition function, plus, is the set of all ordered pair of numbers, 

since every ordered pair of numbers has a sum. The range of plus is the set of all 

numbers that are sums of some pair of numbers, e.g. the set of all numbers.  

   (c)     The domain of the father of relation, F, where F(x, y) if and only if y is the 

father of x is the set of all people who have fathers, i.e. the set of all people. 

The range of F is the set of all people who are fathers of someone.      

  Exercise 7 .  For each of the following relations, determine its domain and its range. 

Then determine whether it is a functional relation.

   (a)     The relation R(x, y) such that x and y are people and y is a (biological) child 

of x.  

   (b)     The relation R(x, y) such that x and y are people and y is a (biological) parent 

of x.  

   (c)     The relation R(x, y) such that x and y are people and y is the current husband 

of x in a monogamous society.  

   (d)     The relation R(x, y) such that x and y are people and y is a current husband of 

x in a polygamous society.  

   (e)    The relation R(x, y) such that x and y are positive integers and y is a factor of x.  

   (f)     The relation R(x, y) such that x and y are positive integers and x is a factor of y.  

   (g)    The relation R(<x, y>, z) with x, y, and z integers and z = x or z = y.  

   (h)    The relation R(<x, y>, z) with x, y, and z integers and z = x and z = y.       

  5.2.6 Stacks 

  Example 13 .  Stacks  

   (a)     The data of a stack can be data values of any (one) type. For example, a stack 

of numbers, a stack of memory addresses, a stack of sets, and so on.  
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   (b)    The data components are arranged as a sequence.  

   (c)    The basic allowed operations are push, pop, length, and top.      

  Definition 15  .    x is a stack ↔ x =<S, push, pop, length, top> where   

   (a)    S is a sequence of data values of any one type.  

   (b)    The only operations allowed to be performed on S are push, pop, length, and 

top and operations definable in terms of those operations

(c) The operations push, pop, length, and top are defined below:    

   let <e 
1
 , e 

2
 , … e 

n-1
 , e 

n
 > represent any nonempty sequence, “< >” represent the empty 

sequence, and “val” represent any data value of the same type as the values of S. 

Here the rightmost element of the sequence is the top of the stack. Then the func-

tions push, pop, top, and length can be defined as follows:

   push(<e 
1
 , e 

2
 , … e 

n-1
 , e 

n
 >, val) = <e 

1
 , e 

2
 , … e 

n-1
 , e 

n
 , val>  

  push(< >, val) = <val>  

  pop(<e 
1
 , e 

2
 , … e 

n-1
 , e 

n
 >) = <e 

1
 , e 

2
 , … e 

n-1
 >  

  pop(< >) = < >  

  length(<e 
1
 , e 

2
 , … e 

n-1
 , e 

n
 >) = n  

  length(< >) = 0  

  top(<e 
1
 , e 

2
 , … e 

n-1
 , e 

n
 >) = e 

n
   

  top(< >) = error       

 This is not the only way stacks can be defined. The point here is to show how 

the notation of logical English can be used.   

  5.2.7 1-Dimensional Arrays 

  Example 14 .  1-Dimensional arrays  

   (a)    The data can be data values of any (one) type.  

   (b)    The data components are arranged as a fixed length sequence.  

   (c)    The allowed operations are get and put.      

  Definition 16 .  x  is a 1-dimensional array  ↔ x = <S, n, get, put> where

   (a)    n is a nonnegative integer  

   (b)    S is a sequence of data values of any (one) type of length n  

   (c)     The operations get and put are defined as follows:

   let <e 
1
 , e 

2
 , … e 

n-1
 , e 

n
 > represent any nonempty sequence of length n, “< >” represent 

the empty sequence, “val” represent any data value of the same type as the values of 

S and let i be any positive integer <= n, then
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   get(<e 
1
 , …e 

i-1
 , e 

i
 , e 

i+1
 , … e 

n
 >, i) = e 

i
      

  get(< >, i) = error  

  put(<e 
1
 , …e 

i-1
 , e 

i
 , e 

i+1
 , … e 

n
 >, i, val) = <e 

1
 , …e 

i-1
 , val, e 

i+1
 , … e 

n
 >  

  put(< >, i, val) = error        

 You may be more familiar with these operations in the context of programming 

language instructions where “put” is represented by assignment. In such program-

ming languages put(<e 
1
 , … e 

i-1
 , e 

i
 , e 

i+1
 , … e 

n
 >, i, val) would be  written S[i] ← val.  

  Exercise 8 .  Try to formulate a similar definition for some other data structure with 

which you are familiar, e.g. string, 2-dimensional array, queue, circular queue, tree, 

or graph.       



        Chapter 6   
 Expressing Problem Specifications       

  This chapter is about expressing functional problem specifications using logical 

English. After studying this material you should be able to:

   1.    Determine the domain and solution condition of functional problem specifications 

expressed in English.  

   2.    Identify various defects in problem specifications.  

   3.    Express the logical structure of functional problem specifications using logical 

English.      

  Outline 

  6.1 Functional problem specifications  

  6.2 What can go wrong with problem specifications  

  6.3 Expressing problem specifications with logical English   

    6.1 Functional Problem Specifications  

  Definition 1 .  A  functional problem specification  (or  problem definition ) consists of 

two things, a  domain specification  and a  solution specification . The domain specification 

of a problem is a set of conditions, called  domain conditions , which define the  domain  

of that problem, i.e. the set of things the problem is about. The solution specification 

of a problem is a set of conditions, called  solution conditions , which describe, for 

each element of the domain, the conditions that anything would have to satisfy in order 

to be the solution for that element of the domain. The set of solutions of a problem is 

sometimes called its  range . In addition, it must be that for each element of the domain 

no more than one thing (perhaps nothing) can satisfy the solution conditions of the 

problem, i.e. for each element of the domain of the problem there is at most one solution. 

 The kinds of problems defined here are called “functional” because they must 

have at most one solution for each element of their domain. For example, the problem 

of finding some number bigger than 7 is not functional, since there are many numbers 
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bigger than 7. On the other hand, the problem of finding the smallest integer bigger 

than 7 is functional, since there is only one such number, 8. Finally, the problem of 

finding the nth even prime number is functional but has no solution for n > 1 since 

2 is the only even prime number. 

 Normally the term “functional problem specification” will be shortened to just 

“problem specification” or just “problem.” Finally, problem specifications are also 

called problem definitions.  

  Example 1 .  The domain condition of the problem of finding the positive square 

root of any positive integer is the condition of being a positive integer. The solution 

condition for each element of the problem domain is the condition of being the 

positive square root of that domain element.  

  Example 2 .  The domain of the function corresponding to the problem of Example 

1 is the set of positive integers and the range is the set of numbers that are positive 

square roots of positive integers. 

 A problem specification, sometimes called an external specification, describes a 

problem, it does not describe how that problem can be solved. Describing how a 

problem can be solved is the job of an algorithm or program design, sometimes 

called an internal specification. There is, however, a very close relation between 

functional problem specifications and program designs. As described later, program 

designs will include preconditions and postconditions, typically as comments. 

The preconditions of a program design describe what inputs a program is intended 

to work with and the postconditions describe, for each of those inputs, what condi-

tions the corresponding output should satisfy. If a program design solves a specific 

problem (and no more general one) then the preconditions of the program design 

are the same as the domain conditions of the problem and the postconditions of 

the program design are the same as the solution conditions of the problem. Program 

designs will be discussed in detail in later chapters.  

  Example 3 .  The problem of finding the larger of any ordered pair of numbers. The 

domain of the problem is the set of all ordered pairs of numbers. For any given ordered 

pair of numbers, the corresponding solution (range element) is the larger of the two 

numbers. Note that both the domain and range have infinitely many elements. 

 If a program solves exactly this problem then its intended inputs are ordered 

pairs of numbers and, for any given ordered pair of numbers, its output is the larger 

of the two input numbers. For example, the ordered pair of numbers (3, 5) is an 

element of the domain of this problem, and the corresponding solution is the 

number 5. A program which solved this problem would return 5 as its output when 

given the ordered pair of numbers (3, 5) as inputs.  

  Example 4 .  Consider the problem of sorting a specific list of names. The domain 

of this problem is the set whose only element is that list of names. The solution 

condition is that any solution must be that list of names in sorted order. The range 
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is the set whose only element is that list of names in sorted order. Note that the 

domain and range have only a single element each. Moreover, if a program solves 

exactly this problem then its only intended input is that specific list of names and 

its only correct output will be that list in sorted order.  

  Example 5 .  The more general (and more typical) problem of sorting any list of 

names. The domain of this problem is the set of all possible lists of names. For a 

given list of names the solution condition is that the solution must be that list in 

sorted order. The range of this problem then is the set of all lists of names that are 

in sorted order. Note that both the domain and the range are infinite. Moreover, if a 

program solves exactly this problem than its intended input is any list of names and 

the corresponding output will be that list in sorted order. Note that any program that 

solves this problem will also solve the previous problem, but not  vice versa .  

  Example 6 .  The problem of finding a customer record from a specific customer 

file, given the customer’s account number. A program which solved this specific 

problem would take this specific file and an account number from the list of 

accounts in this file as inputs and would return the corresponding customer record 

as output. 

 The domain of this problem is the set of all ordered pairs <file, custno> where “file” 

is the file in question and “custno” is the customer number of a customer with an account 

number in that file. For any such pair, the range element (solution) is the corresponding 

record from that file. The number of elements in the domain of this problem is the 

number of account numbers of customers whose accounts are in that file. The number of 

elements in the range of this problem is the number of customer records in the file.  

  Exercise 1 .  Describe the domain and range for each of the following problem 

specifications. Tell how many elements are in the domain and in the range. Say 

what a program that solved the problem would do.

   (a)    The problem of alphabetizing a specific list of English words.  

   (b)    The problem of alphabetizing arbitrary lists of English words.  

   (c)    The problem of eliminating duplicates from a specific list of numbers.  

   (d)    The problem of eliminating duplicates from arbitrary lists of numbers.      

  Exercise 2 .  Explain how a single program can solve many different problems. Give 

a simple example of a single program and several different problems that it solves. 

Note you don’t have to write the program, just describe what it does.   

  6.2 What Can Go Wrong with Problem Specifications  

 Writing good problem specifications is one of the major tasks of software devel-

opment. Defective specifications lead to defective programs and dissatisfied cus-

tomers. Among the problems commonly encountered are vagueness, ambiguity, 
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incompleteness, logical inconsistency, functional ambiguity, and redundancy. This 

chapter describes the use of logical English and mathematical English to help 

express problem specifications clearly. Later chapters will describe methods for 

reasoning about clearly expressed specifications, e.g. to simplify them or to detect 

and correct defects. 

 Recall that an expression is vague if and only if there are cases for which it is 

unclear whether the expression does or does not apply. Such cases are often called 

“borderline cases.” Also, an expression is ambiguous just in case it has two or more 

different meanings. In real life vagueness and ambiguity are responsible for 

more program fixes than are caused by errors in programming. 

  Exercise 3 .  Look for examples of vagueness and ambiguity in the problem 

specifications described in Exercise 1 above.  

  Definition 2 .  A problem specification is said to be  incomplete  if there are elements 

of the problem domain for which no solution condition is specified.  

  Example 7 .  If a specification mentions four types of domain element but does not 

specify what counts as a solution in one or more of the cases then the specification 

is incomplete. 

 Specification are often incomplete because the specifier believes that certain 

cases are “obvious.” Sometimes they are obvious, but programmers get into a lot of 

trouble filling in “obvious” cases on their own. 

 Notice that a specification can be complete even though there is no solution for 

some domain elements. For example, consider the problem of finding the nth even 

prime number for any positive integer n. The problem specification has the set of 

all positive integers as its domain. For any positive integer, n, the solution condition 

is that the solution value be the nth even prime number. Notice, however, that for 

n > 1 there is no such thing as the nth even prime number since the first and only 

even prime number is 2. This problem definition cannot be said to be incomplete, 

since it clearly specifies what condition a solution would have to satisfy for each 

element of its domain.  

  Definition 3 .  A specification is  logically inconsistent  just in case its domain condition 

or its solution condition is logically inconsistent or if the two are inconsistent with 

each other. 

 If the domain condition of a problem is logically inconsistent then the problem 

would have an empty domain. Logical inconsistency will be discussed in detail in 

later chapters.  

  Example 8 .  A problem specification that defined its domain to include a plane 

geometric figure which is both round and not round would be logically inconsistent. 

 Very few specifications are given where logical inconsistency is so obvious. 

Where inconsistency often becomes a serious problem is with complex problem 
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specifications, where the logically conflicting parts are widely separated. However, 

inconsistency can happen even with a short specification if parts of it are written at 

different times or by different people.  

  Example 9 .  A problem specification that had the number 3 in its domain and required 

that the solution in that case should be an even number and also that the solution 

should not be an even number. Since this is not logically possible such a specification 

would be logically inconsistent.   Again, few people write specifications that are so 

obviously inconsistent, but many specifications are written which are inconsistent.  

  Definition 4 .  A specification is  functionally ambiguous  just in case it specifies two 

different solution conditions for some element of its domain. 

 Recall that a specification is supposed to describe a function from domain 

elements to solutions, with at most one solution for each domain element.  

  Example 10 .  A problem specification that had the number 3 in its domain and for 

which, according to one part of the specification, the corresponding solution is 5 

while, according to another part of the specification, the solution is 8 would be 

functionally ambiguous.  

  Definition 5 .  A problem specification is said to be  redundant  just in case some part 

of the specification can be removed without changing the domain or solution set of 

the problem. Also, the part that can be removed is said to be  redundant  relative to the 

rest of it. 

 The most obvious cause of redundancy is when one part of the specification is 

repeated. More subtle cases occur when some parts of the specification logically 

imply other parts of the specification, making the latter redundant.  

  Example 11 .  Below are specifications for a sales commission problem. Describe 

the domain and solution condition of the problem. Also look for vagueness, 

ambiguity, incompleteness, inconsistency, and redundancy in these problem 

specifications. 

 Everyone gets a base salary no matter what. Trainees get an additional $100 per week. 

Experienced salespeople in established territories are expected to sell at least $2,000 per 

week. If they do not then they get only their base salary. Anyone who sells more than 

$2,000 in a week gets a 10% commission on the amount over $2,000. Anyone selling in 

a new territory gets an additional 15% commission on the sales amount over $2,000. 

Experienced salespeople get 25% commission on sales over $2,000 per week in new 

territories. 

 First ask what the problem is. It is to find the salaries of salespeople as deter-

mined by certain conditions. The domain of the problem, then, is some unspecified 

set of salespeople as represented by their sales, experience, and territories. For a 

given salesperson the solution to the problem would be a number representing that 

person’s salary. The solution condition describes how a salesperson’s salary 

depends upon the conditions described in the specification. Here are some conditions 

involved in the solution condition:
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   1.    Whether the salesperson is experienced or not.  

   2.    Whether the person’s territory is established or new.  

   3.    Whether the person sold more than $2,000 per week.     

 These conditions can be used in problem specifications such as the following:

   1.    If salesperson is experienced and sales are less than or equal $2,000 then salary 

is base salary.  

   2.    If salesperson is new and sales are less than or equal to $2,000 then salary is base 

salary plus $100.  

   3.    If salesperson’s sales are greater than $2,000 per week and territory is estab-

lished then salary is base salary plus 10% of amount above $2,000 plus $100 if 

salesperson is new.  

   4.    If salesperson’s sales are greater than $2,000 per week and territory is new then salary 

is base salary plus 25% of amount above $2,000 plus $100 if salesperson is new.     

 Of course, these conditions could have been expressed in many different ways. 

Note that it took a certain amount of reading between the lines just to get this far. 

 As for vagueness, ambiguity, and so on, there is much to complain about.

   1.     Vagueness . The terms “trainee” and “established territory” may be vague, 

depending on the context. If there are clear designations, e.g. by management, 

as to which salespeople are trainees and which territories are established then 

there may be no vagueness.  

   2.     Ambiguity . In most contexts there would be no ambiguity issues with this 

specification.  

   3.     Incompleteness . What are new salespeople expected to sell? What do they get if 

they don’t sell at least $2,000 per week?  

   4.     Logical inconsistency . Not much to complain about here.  

   5.     Functional ambiguity . Nothing ambiguous here.  

   6.     Redundancy . The last condition “Experienced salespeople get 25% commission 

on sales over $2,000 per week.” is redundant given the previous conditions.      

  Exercise 4 .  The Multiple Adaptive Digital Diagnostically Organized Computer, 

MADDOC, is the computer based medical diagnosis system on the Intergalactic 

Starship Belmont. A small part of it is to be reprogrammed according to new 

specifications given by its new Medical Officer, Zarg. Rumor has it that Zarg was 

not properly reassembled during his last Teleporter use. As a result you feel the 

need to be very careful about the specifications. Here they are: 

 The part of the program to be reprogrammed is to calculate the number of aspirin tablets to give 

to crew who show certain symptoms (not discussed here). Zarg tells you that everyone gets at 

least one tablet, so that they do not go away feeling untreated. Martian crew who are new to the 

ship get an additional tablet. Crew who work in the nuclear boiler room get four additional 

 tablets. Crew who have had more than five tablets in the last 24 hours get no more. 

 Describe the problem, its domain and its solution condition(s). Also look for vague-

ness, ambiguity, incompleteness, inconsistency, and redundancy in this problem 

specification.   
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  6.3 Expressing Problem Specifications with Logical English  

 One thing you can do to help reduce defects is to try to transform specifications 

from ordinary English into logical English. This process focuses your attention on 

relevant issues, such as vagueness, ambiguity, and incompleteness. Moreover, the 

attempt can be helpful even if you don’t finish it. Fortunately, formalization can be 

done at various levels of detail. A top down approach to formalization is often 

useful and avoids wasting time on irrelevant details. Once specifications are clearly 

expressed, the machinery of logic can be applied to test them for various flaws. 

However, with a few exceptions discussed briefly at the end of part III, the process 

of expressing problem specifications in logical English is most useful when 

restricted to simple problem specifications, those parts of large specifications that 

need clarification, or the higher level iterations of complex problem specifications. 

Otherwise it is easy to get lost in logical notation. 

  Example 12 .  Using the following abbreviations, express the following problem 

using logical English. Given any two integers, find the smaller of them.

 English  Logical English 

 x is an integer  I(x) 

 The ordered pair <x, y>  <x, y> or (x, y) 

 x is in the domain of the problem  DOM(x) 

 The smaller of x and y  MIN(x, y) 

 y is the solution for domain   element x  SOL(x, y) 

 The domain condition of this problem can be expressed by

   DOM(x) ↔ x = <x 
1
 , x 

2>
  ∧ I(x 

1
 ) ∧ I(x 

2
 )    

 and the solution condition can be expressed by

   SOL(x, y) ↔ y = MIN(x 
1
 , x 

2
 )    

 Different situations call for different levels of formal detail. For example, if we 

wanted to spell out the meaning of MIN we could write

   y = MIN(x 
1
 , x 

2
 ) ↔ (x 

1
  < x 

2
  ∧ y = x 

1
 ) ∨ (∼(x 

1
  < x 

2
 ) ∧ y = x 

2
 ).    

 So the solution condition could be expressed in more detail by

   SOL(x, y) ↔ ((x 
1
  < x 

2
  ∧ y = x 

1
 ) ∨ (∼(x 

1
  < x 

2
 ) ∧ y = x 

2
 )).    

 There is no one level of detail which is always best. A good rule of thumb is 

not to express any more detail than is useful for what you are trying to do at the 

time. 

 There is almost always more than one correct way to translate English into logical 

English. For example, “y is the minimum of x 
1
  and x 

2
 ” was expressed above by

   (x 
1
  < x 

2
  ∧ y = x 

1
 ) ∨ (∼(x 

1
  < x 

2
 ) ∧ y = x 

2
 )    

 but it could also be expressed as
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   (x 
1
  < x 

2
  → y = x 

1
 ) ∧ (∼(x 

1
  < x 

2
 ) → y = x 

2
 ).    

 The reason either expression would work is that they are logically equivalent, 

i.e. they are both true or both false no matter what the values of the variables are. 

Logical equivalence will be discussed in detail in a later chapter. 

 This next example shows, again, that specifications can be done at more than one 

level of detail. Normally it is a good idea to use a “top down” approach to 

formalization. This amounts to formalizing the overall specification first, using 

high level abbreviations, i.e. abbreviations that leave out low level details. Then, if 

it is useful, make the lower level details explicit.  

  Example 13 .  Express the following problem using logical English. Given a finite 

sequence of integers in any order, find the corresponding sequence of integers 

arranged in ascending order. 

 For this problem, the domain condition, DOM(x), is that x is a finite 

sequence of integers with no restrictions on its order. The domain therefore is 

the set of all finite sequences of integers. The solution condition, SOL(x, y), is 

that y is the finite sequence with the same terms as x, but arranged in ascending 

order. 

 Using the following abbreviations:

 PERM(x, y)  For y is a permutation of x, 

 INTSEQ(x)  For x is a finite sequence of integers, and 

 ASORT(y)  For y is sorted in ascending order, 

 the specification for this problem can be written

   DOM(x) ↔ INTSEQ(x)  

  SOL(x, y) ↔ PERM(x, y) ∧ ASORT(y).    

 In some circumstances it would be helpful to give more details about the mean-

ings of PERM, INTSEQ, and ASORT. For example, if the following abbreviations 

are used

 PI(x)  For x is a positive integer, 

 x[i]  For the ith element of sequence x, and 

 LEN(x)  For the length of the sequence x, 

 then the meaning of ASORT(y) can be expressed as

   (∀i)((PI(i) ∧ i < LEN(y)) → (y[i] <= y[i + 1]))    

 and the problem specification above can be written

   DOM(x) ↔ INTSEQ(x)  

  SOL(x, y) ↔ PERM(x, y) ∧ (∀i)((PI(i) ∧ i < LEN(y)) → (y[i] <= y[I + 1])).    
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 This version clearly describes what ASORT means, at the expense of using a 

much more complex expression. (A similar analysis could be done for PERM and 

INTSEQ.) Which representation of the solution condition is best would depend 

upon how much detail about ASORT (or PERM or INTSEQ) needs to be made 

explicit. Too much detail wastes time with irrelevant details. Too little detail leads 

to ignoring relevant issues. When used with the right level of detail logical 

English is a great help, although initially it does require some getting used to.  

  Example 14 .  Express the following problem using logical English. Find the 

minimum and the maximum of any ordered triple of not necessarily distinct 

integers. Stop at the first level of detail. 

 Using the following abbreviations

 I(x)  x is an integer, 

 <x 
1
 , x 

2
 >  The ordered pair <x 

1
 , x 

2
 >, 

 <x 
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 , x 
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 , x 
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 >  The ordered triple <x 
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 MIN3(x 
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 MAX3(x 
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 )  The maximum of <x 
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 DOM(x)  x is in the domain of the problem, and 

 SOL(x, y)  y is the solution for domain element x 

 we can express the problem as follows.

   DOM(x) ↔ x = <x 
1
 , x 
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 > ∧ I(x 
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  SOL(x, y) ↔ y = <y 
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 The meaning of MIN3 could be express by

   w = MIN3(x, y, z)  ↔ (w = x ∨ w = y ∨ w = z)

   ∧ w <= x ∧ w <= y ∧ w <= z        

  Exercise 5 .  Write the corresponding expression for MAX3.  

  Exercise 6 .  Express the following problem using logical English. Find the positive 

square root of any positive number. Use the following abbreviations.

 SQRT(x, y)  y is the positive square root of x 

 DOM(x)  x is in the domain of the problem, and 

 SOL(x, y)  y is the solution for domain element x 

 All the examples above were numeric. But of course many problems have solution 

values that are not numbers. For example, classification problems are about finding 

the class in which something belongs.  
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  Example 15 .  Express the following problem using logical English notation. Find 

the grade to be assigned any test where scores of >=90 get “A,” 80–89 get “B,” 

70–79 get “C,” 60–69 get “D,” and < 60 get “F” and all test scores are integers 

between 0 and 100. Using the obvious abbreviations.

   DOM(x) ↔ I(x) ∧ 0 <= x ∧ x <= 100  

  SOL(x, y)  ↔ ((x >= 90 ∧ y = “A”) ∨ (80 <= x ∧ x <= 89 ∧ y = “B”)

   ∨ (70 <= x ∧ x <= 79 ∧ y = “C”) ∨ (60 <= x ∧ x <= 69 ∧ y =  

  “D”) ∨ (x < 60 ∧ y = “F”))        

  Exercise 7 .  Express the following problem using logical English. Determine what 

class a student belongs to as a function of the number of semester hours of credit 

earned where a student with <= 30 credits is a freshman, 31–60 credits is a 

sophomore, 61–90 credits is a junior, and >90 credits is a senior. There is no upper 

limit on the number of credits a student can earn. Use the abbreviations from the 

previous examples. 

 Many problems are  table lookup problems . The simplest problems of this kind 

require finding an item in a single list or table. More complicated problems of this 

kind include SQL queries of relational data bases.  

  Example 16 .  Find the population of any city in some table of cities and their 

populations. Assume that the table has two columns, city names in column 1 and 

populations in column 2. Then, using the following abbreviations

 c  The city population table being used 

 ISCITY(x)  x is a city name 

 The specifications for this problem can be written

   DOM(x) ↔ ISCITY(x) and ∃r(I(r) ∧ x = c[r, 1])  

  SOL(x, y) ↔ y = c[r, 2]    

 This expresses the fact that the domain of the problem is the set of cities in col-

umn 1 of the city population table and that what is wanted is the corresponding 

population in column 2. Notice the use of an existential quantifier. 

 Other table look up problems include:

   (a)    Find the cosine of any angle from a table of cosines.  

   (b)    Find the name of an employee given the employee’s social security number.  

   (c)    Find the price of a book given its ISBN.  

   (d)    Find the name of a city given the ZIP code of an address in that city.  

   (e)    Find the rate per $1,000 of life insurance for a person with specified age, sex, 

medical history, etc.     

  Decision problems  are another common type of problem. These problems 

involve determining whether some condition is or is not true of some thing. 

Examples include:
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   (a)    In some list of cities and their populations, are there any cities with populations 

> one million?  

   (b)    Are there any duplicates in a certain list?  

   (c)    Is this file sorted?  

   (d)    Did the program compile?      

  Example 17 .  Does list L of integers have any duplicates in it? Note that the domain 

of this problem is not L but the set whose only element is L. Using the previously 

introduced abbreviations along with

   ___ ∈ L abbreviates ___ is an element of list L    

 the problem can be expressed

   DOM(x) ↔ x = L (not x ∈ L)  

  SOL(x, y)  ↔ (y = “yes” ∧ ∃u∃v(I(u) ∧ I(v) ∧ ∼(u = v) ∧ x 
u
  = x 

v
 )

   ∨ (y = “no” ∧ ∼( ∃u∃v(I(u) ∧ I(v) ∧ ∼(u = v) ∧ x 
u
  = x 

v
 )        

  Exercise 8 .  Express the following problem specifications using logic notation. Use 

the following abbreviations. Invent others if you need them.

 DOM(x)  x is in the domain of the problem 

 SOL(x, y)  y is the solution of the problem for domain element x 

 NUMSEQ(z)  z is a finite sequence of numbers 

 MIN(z, y)  y is the minimum of the elements of sequence of 

numbers z 

 ASORT(y)  y is sorted in ascending order 

 DSORT(y)  y is sorted in descending order 

   (a)    The problem of finding the minimum of a finite sequence of numbers.  

   (b)    The problem of determining whether an arbitrary finite sequence of numbers is 

sorted (in ascending order or descending order).  

   (c)    The problem of determining whether one finite sequence of numbers is longer 

than another finite sequence of numbers.      

  Exercise 9 .  The problem is to check a student record and classify it as “OK” or 

“NG.” Each student record has many fields. Among those fields are the TIME field, 

the CODE field, and the AGE field. The specification details are described below. 

The TIME field has values “day” and “night,” the CODE field has values “trad” and 

“adp,” and the AGE field has values that are integers between 0 and 100. 

 If the TIME field is “day” and the AGE field has a value less than 24 then if 

the CODE field is “trad” then the record is “OK.” Under these same conditions if the 

CODE field is not “trad” then the record is “NG.” If the time field is not “day” then 

the record is “NG” unless the AGE field has a value greater than or equal to 24, in 

which case it is “OK.” 



64 6 Expressing Problem Specifications        

 Use the following abbreviations, and others if needed.

 STUREC(x)  x is a student record 

 TIME.x  The time field of student record x 

 CODE.x  The code field of student record x 

 AGE.x  The age field of student record x 

 CLASS(x)  The classification of student record x 

 Finish expressing this problem using logical English.

   DOM(x) ↔ STUREC(x)  

  SOL(x, y) ↔ (y = “OK” ∧… …) ∨ (y = “NG” ∧ … …)     

  Exercise 10 .  Recall the problem of determining sales commissions that was 

discussed earlier. 

 Everyone gets a base salary no matter what. Trainees get an additional $100 

per week. Experienced salespeople in established territories are expected to sell 

at least $2,000 per week. If they do not then they get only their base salary. 

Anyone who sells more than $2,000 in a week gets a 10% commission on the 

amount over $2,000. Anyone selling in a new territory gets an additional 15% 

commission on the amount over $2,000. 

 Use the following abbreviations, and others if needed.

 SP(x)  x is a salesperson 

 EXP(x)  x is experienced 

 EST(x)  x sells in an established territory 

 SOLDAMT(x)  The amount of x’s sales in $ 

 Express this problem using logical English.  

  Exercise 11 .  At one time the consumer loan laws of one state allowed lenders to 

charge insurance origination fees for the life insurance and for the accident and health 

insurance they may offer borrowers. Borrowers are not required to buy either kind of 

insurance. For each of the two kinds of insurance the origination fee is: $0 if the 

amount of indebtedness is less than $250, $1 if the amount is between $250 and $500, 

and $2 if the amount is greater than $500. Borrowers occasionally renew their loans, 

i.e. borrow more before the original loan is completely repaid. In that case they can 

again choose none, one, or both kinds of insurance and another loan origination fee 

can be charged for each kind of insurance except that no more than two origination 

fees for each type of insurance can be charged in any one year period. 

 Use the following abbreviations, and others if needed.

 B(x)  x is a borrower 

 WANTSINS(x)  x wants life insurance 

 PRIORFEES(x)  Number of life insurance fees charged x within the 

previous year 
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 DEBTAMT(x)  Amount of indebtedness of x’s loan 

 FEE(x)  Amount of life insurance origination fee x can be 

charged 

 Express this problem using logical English.  

  Exercise 12 .  The problem is to determine what type of bill (polite, nasty, or none) and 

what kind of advertisement to send (flyer, catalog, or none) to a customer as a function 

of whether the customer is rich, paid up, and high volume. Here are the details. 

 Everyone gets a printed sales flyer except those who are not rich, not paid up, and 

not high volume. Rich customers get a long catalog unless they are not paid up and 

not high volume. Poor customers get a long catalog just in case they 

are high volume. The only people who get nasty bills are those who are poor, not paid 

up, and not high volume. Others get a polite bill if and only if they are not paid up. 

 Use the following abbreviations, and others if needed.

 CUST(x)  x is a customer 

 RICH(x)  x is rich 

 PAIDUP(x)  x is paid up 

 HIVOL(x)  x is high volume customer 

 PBILL(x)  x is a polite bill 

 NBILL(x)  x is a nasty bill 

 FLYER(x)  x is a flyer 

 CTLG(x)  x is a catalog 

 Express this problem using logical English.  

  Exercise 13 .  The problem is to determine a diagnosis (ill or well) for patients given 

three possible symptoms (dizzy, congested, fever). Here are some details. 

 If a patient is dizzy and congested then patient is ill. If patient has fever and is 

congested then also ill. If no fever and not congested then patient is well. If no fever 

and not dizzy then patient is well. If dizzy, fevered, and congested then patient is ill. 

In all other cases, patient is well. 

 Use the following abbreviations, and others if needed.

 P(x)  x is a patient 

 D(x)  x is dizzy 

 C(x)  x is congested 

 F(x)  x has a fever 

  Express this problem using logical English.  

  Example 18 .  The parity of a sequence of 0s and 1s is said to be even if the number 

of 1 bits in the sequence is even, and odd if the number of 1 bits in the sequence is 

odd. A parity checking scheme is a procedure for trying to detect errors in the 
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storage or transmission of data. An even parity checking scheme for use with eight bit 

character codes, e.g. ASCII or EBCDIC codes, involves the following. Before each 

character is saved to memory or transmitted its parity is determined. If its parity is 

even then a ninth parity bit of 0 is added to the character code, otherwise a ninth parity 

bit of 1 is added. As a result, the parity of the nine bit sequence will always be even. 

Then the nine bit sequence is saved to memory or transmitted. Later, when the 

corresponding nine bit sequence is retrieved from memory or received, its parity is 

checked. If the received nine bit sequence has odd parity then an error is detected. If 

it has even parity then no error is detected, which is not to say that no error exists. 

 Two problems associated with parity checking are the problem of generating the 

parity bit for any eight bit character code and the problem of checking the parity of 

a nine bit code with parity bit. Using the following abbreviations

 BINSEQ(x)  x is a sequence of 0s and 1s 

 NUMONES(x)  the number of 1s in sequence x 

 LEN(x)  the length of x, e.g. LENx=9 

 BIT(n, x)  the nth bit of x, e.g. BIT(5,x) = 1 

 EVENPARITY(x)  x has even parity 

 The problem of determining the parity bit (bit 9) of any nine bit sequence of 0s 

and 1s can be expressed as follows.

   DOM(x) ↔ BINSEQ(x) and LEN(x) = 9  

  SOL(x, y)  ↔ (y = ‘OK’ ∧ EVENPARITY(x))

   ∨ (y = ‘ERROR’ ∧ ∼ EVENPARITY(x))        

  Exercise 14 .  Using the same abbreviations as in the example above, and others if 

needed, express the problem of determining the parity bit (0 or 1) of any 8 bit 

sequence of 0s and 1s.      



        Chapter 7  
 Expressing Program Designs 

         In this book the terms “algorithm” and “program design” will often be used inter-

changeably. When they are distinguished, algorithms are more abstract than program 

designs. In this abstract sense a single algorithm might be implemented by many dif-

ferent program designs. Such program designs might take account of specific features 

of particular programming languages, while abstract algorithms would be indifferent 

to details of specific languages. In any case the difference between abstract 

algorithms and more concrete program designs is not usually of interest here. 

 Readers of this book are assumed to have some programming experience. The 

discussion below is not intended to teach anyone how to design or write programs. 

Instead, it is intended to show a bit about the role that logical English plays in 

expressing algorithms by means of pseudocode. It is also intended to describe the 

specific version of pseudocode used here. After studying this material you should 

be able to translate algorithms expressed in ordinary English into the pseudocode 

described below.  

  Outline 

  7.1 Pseudocode for instructions 

  7.1.1 Atomic instructions  

  7.1.2 Compound instructions 

  7.1.2.1 Sequence  

  7.1.2.2 Alternation (or selection) control structure  

  7.1.2.3 Repetition (looping)  

  7.1.2.4 Nested instructions  

  7.1.2.5 Parallel control structures    

  7.2 Pseudocode for algorithms     

  7.1 Pseudocode for Instructions  

  Definition 1 .   Pseudocode  is a restricted subset of English formatted to resemble a 

programming language. 
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 While there is no standard pseudocode, once you understand one version, it is 

easy to understand other versions. Many programmers use pseudocode. Abstract 

versions of it are used to express abstract algorithms. More language specific ver-

sions of it are used to express designs for programs in those languages. Pseudocode 

is supposed to be clear enough that a human being can execute it “by hand,” without 

using a computer and with little or no knowledge of programming languages.  

  7.1.1 Atomic Instructions 

 Assignment statements are the simplest kind of instruction. The simplest assignment 

statements assign a literal value to a program variable, e.g.

   x ← 3.14    

 In this instruction, “x” is a program variable, “←” represents assignment, and 

“3.14” is a literal value. 

 Program constants and variables play a dual role. When a program is written 

they are logical variables, i.e. they are placeholder symbols which do not represent 

any particular values. When a program is executed, a program constant is given a 

fixed value for the duration of that run of the program. It is like a name in English. 

A program variable is like a pronoun in English, it may have one value at one time 

and a different value at a different time during a single run of a program. 

 The general form of an assignment statement is

   var ← expression    

 where “var” is a program constant or variable, “←” represents assignment, and 

“expression” is a program constant, a program variable, or a definite description 

constructed from program constants, program variables, and function symbols in 

ways the reader is surely familiar with. For example,

   x ← 3 + 5/2 - PI     

  7.1.2 Compound Instructions 

 A compound instruction consists of two or more instructions and a control struc-

ture. The control structure is a specification of the order in which the instructions 

are to be executed. 

  7.1.2.1 Sequential Control Structure 

 The simplest control structure is to execute instructions in the order in which they 

are written. For example, the instructions
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   x ← 3  

  y ← 5  

  z ← x + y    

 would be executed by first assigning 3 to x, then assigning 5 to y, and then assigning 

3 + 5 to z.  

  7.1.2.2 Alternation (or Selection) Control Structure 

 Alternation is accomplished by first determining the truth value of a condition and 

then executing one instruction if the condition is true and executing some other 

instruction (or no instruction at all) if the condition is false. In most programming 

languages this is represented by “if …then…,” “if… then… else…,” and “case” 

instructions. For example,

   If (x > 3) then print x endif    

 This same instruction can also be written vertically as

   If (x >  3) then  

  print x  

  endif    

 Here is another example.

   If (x > 3) then print x else print 3 endif    

 The vertical form of this is

   If (x >  3) then

   print x  

  else  

   print 3  

  endif       

 The expression “(x > 3)” is a condition, in the logical sense, when it is written, i.e. 

it would be true of some values that could be assigned to x and false for others. 

When instructions involving this condition are executed, x is given a specific value, 

so the condition becomes a statement, which is either true or false.  

  7.1.2.3 Repetition (or Looping) Control Structure 

 Repetition consists of executing instruction(s) 0 or more times. In most program-

ming languages it is implemented by means of loops or iterators. The number of 

times the instruction(s) is repeated depends on the values of various variables just 

before the loop is entered. For example, the instructions

   print x  

  x ← x + 1    
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 which form the body of the following while loop

   While (x > 3) do

    print x  

   x ← x –1     

  endwhile    

 would be executed 0 times if x were less than or equal to 3 when the loop statement 

was executed. They would be executed 1 time if x were greater than 3 and less than 

or equal to 4 when the loop was executed, twice if x were greater than 4 and less 

than or equal to 5, and so on. 

 The indented part of the while loop is called the loop body. In the version of 

pseudocode used here the body of a loop should always be indented. Notice that 

“endwhile” is written directly below “While.” “endwhile” should always be written 

directly below the corresponding “While.” 

 The while loop above is called a pretest loop because the condition is tested 

before the body of the loop can be executed even once. There are also posttest 

loops, such as the following.

   Do

    print x  

   x ← x + 1     

  until (x > 3)    

 This loop will execute the loop body once and then check the truth value of the 

condition. As long as the condition is false, the loop body will be repeated. For 

example, if x = 0 initially then the loop body will be executed three times. If x = 

2 initially the loop body will be executed twice. If x = 3 or more initially then the 

loop body will be executed just once. Again notice the indentation used.  

  7.1.2.4 Nested Control Structures 

The instructions that are parts of compound instructions may themselves be com-

pound instructions. For example

  If (x > 3) then

    print x  

   If (y < 0) then

     print y     

   endif     

and

  While (x > 3) do

    If (y < 0) then

     print y     

   endif     

endwhile
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   While (z = 4) do

     If (x > z) then

      print ‘This is a mess.’     

    else

      print ‘This is also a mess.’     

    endif     

   endwhile  

 Such instructions are called “nested” instructions. Notice again how indentation 

shows level of nesting and shows where an instruction begins and ends. While most 

programming languages are indifferent to indentation, pseudocode is written for 

humans to read, and humans are greatly helped by following the indentation rules 

illustrated above.  

  7.1.2.5 Parallel Control Structures 

 Some programming languages allow parallel execution of instructions. These lan-

guages are intended to be used on computers that have more than one processor. 

There are interesting, and very hard, logical issues involving parallel computing. 

These issues will not be addressed here.    

  7.2 Pseudocode for Algorithms  

 An algorithm expressed in pseudocode consists of one or more instructions and 

some additional lines of text, as shown in the example below. The numbers at the 

left are not part of the pseudocode. The are there to make it easier to refer to lines 

of the pseudocode. 

  Example 1  

    0    Algorithm findMin(x, y)  

    1    # Preconditions: x and y are integers.  

    2    # Postconditions: Returns the smaller of x and y or their common  

    3    # value if x = y.  

    4      

    5      If (x < y) then  

    6     Return x  

    7      else  

    8     Return y  # Here x = y or x > y  

    9      endif  

   10      

   11    endAlgorithm     
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 Line 0 is called the header line. It consists of the word “Algorithm,” a space, the 

name of the algorithm, and a list of zero of more input parameters separated by 

commas and enclosed in parentheses. In this example the name of the algorithm is 

“findMin” and the two input parameters are “x” and “y.” 

 Lines 1–3 are called comment lines. The symbol “#” is used to indicate a 

comment. Everything to the right of “#” to the end of the line is a comment. A 

comment can begin anywhere in a line. Line 8 has a comment in it but is not a 

comment line. Comments are used to communicate information to human 

beings, but they are not instructions and they do not influence the execution of 

the algorithm. 

 Recall the discussion of problem specifications in Chap. 5. An algorithm is nor-

mally created to solve a problem. The preconditions and postconditions in lines 1–3 

specify the problem this algorithm was intended to solve. 

 Lines 4 and 10 are blank. Blank lines are used to provide visual separation 

between major parts of an algorithm. A long algorithm might have several blank 

lines separating several major parts of the algorithm. 

 Lines 5–9 are a typical if…then…else… instruction. Note that they are indented 

to the right of lines 0–3, and 11. 

 Finally, line 11 marks the physical end of the pseudocode. Note that line 11 is 

directly below line 0. 

 Below are more examples of simple algorithms expressed first in English and 

then in pseudocode. In all the following, “Pre:” is used to abbreviate “Precondition”: 

and “Post”: to abbreviate “Postcondition”:  

  Example 2 .  To find the smaller of two real numbers, compare them. If the first is 

smaller than the second then it is the smaller, otherwise the other one is the smaller. 

If they are equal then either one can be considered the smaller one.

   Algorithm findSmaller(a, b)  

  # Pre: a and b are two real numbers.  

  # Post: Returns the smaller of a and b, or their common value if they are equal.

   If (a < b) then

   Return a     

  else

   Return b     

  endif     

  endAlgorithm     

  Example 3 .  To determine the parity bit of a sequence of 8 bits, using even parity, 

count the number of 1 bits in the sequence. Then if that number is odd then the 

parity bit is 1 otherwise the parity bit is 0.

   Algorithm findEvenParityBit(S)  

  # Pre: S is a sequence of 8 binary digits, d 
0
 , d 

1
 , d 

2
 , … d 

7
 .  

  # Post: Returns 1 if the number of 1 bits in S is odd and returns # 0 otherwise.
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   count ← 0  

  I ← 0  

  While (I < 8) do

    If (d 
I
 = 1) then

     count ← count + 1     

   endif  

   I ← I + 1     

  endwhile  

  If (count mod 2 = 0) then  # i.e. if count is even

    Return 0     

  else

    Return 1     

  endif     

  endAlgorithm     

  Example 4 .  To determine whether a specific number is an element of a 2-

dimensional table of numbers, examine the first row, then the second row, etc. 

Within each row examine the columns in order. If the value is found then return true 

else return false.

   Algorithm search2Dtable(T, k)  

  # Pre: T is a 2-dimensional table of numbers and k is a number.  

  # Post: Returns true if k is in T and returns false otherwise.

   nrows ← the number of rows of T  

  ncols ← the number of columns of T  

  r ← 0  

  While (r < nrows) do

    c ← 0  

   While (c < ncols) do

     If (T[r, c] = k) then

      Return true     

    endif  

    c ← c + 1     

   endwhile  

   r ← r + 1     

  endwhile  

  Return false     

  endAlgorithm    

 Notice that the English leaves out some details that are made explicit in the 

pseudocode. Also, pseudocode, while it resembles a programming language, is still 

English. It can include large fragments of English such as “the number of rows of 

T.” You could “test” a pseudocode algorithm by executing it by hand. Finally, it 

would be much easier to convert the pseudocode into a program in a programming 

language then it would be to convert the corresponding English.  
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  Example 5 .  To determine whether two intervals of real numbers overlap, e.g. have a 

nonempty intersection, first determine whether the smaller ends or the larger ends of 

the intervals coincide. If they do then the intervals overlap. Otherwise determine 

which interval starts to the left of the left end of the other, then determine whether the 

larger end of that interval is at or to the right of the smaller end of the other. If both 

those conditions are true then the intervals overlap, otherwise they do not.

   Algorithm overlap(a, b, c, d)  

  # Pre: [a, b] and [c, d] are endpoints of intervals of real numbers.  

  # Post: Returns true if [a, b] and [c, d] overlap and false otherwise.

   If ((a = c) or (b = d)) then

    Return true     

  else    # a not = c and b not = d

    if ((a < c) and (b > = c)) then

      Return true # a < c < = b, so overlap     

    else

      Return false     

    endif     

   else   # c < a, since the other two cases are

       # covered above  

    If (d > = a) then # c < a < = d, so overlap

      Return true     

    else

      Return false     

     endif     

    endif     

   endif  

   endAlgorithm     

  Exercise 1 .  Write pseudocode for each of the following algorithms. Note your 

solutions do not have to be exactly the same as the given solutions, but they should 

be similar and equivalent.

   (a)    To find the smallest of three integers first find the smaller of the first two then 

find the smaller of that and the third.  

   (b)    To determine whether an integer is even, divide it by 2 and examine the remain-

der. If the remainder is 0 then the integer is even, otherwise it is odd.  

   (c)    To find the smallest of a nonempty list of integers, examine the integers in order 

from beginning to end, keeping track of the smallest integer examined so far. 

At the end it will be the smallest in the list.  

   (d)    To count the number of elements of a list of integers which are 7, examine the 

list from beginning to end keeping track of how many 7s have been encoun-

tered so far.  

   (e)    To determine whether a nonempty list of numbers is sorted small to large look for 

pairs of numbers in the list which are out of order, i.e. larger first and smaller 

second. If no such pairs are found then the list is sorted from small to large.  
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   (f)    To determine whether every element of one nonempty list of numbers is less 

than every element of another nonempty list of numbers, find the largest ele-

ment of the first list, find the smallest element of the second list, and if the 

former is less than the latter then the condition is true, otherwise it is false.  

   (g)    To determine whether x is in the interval [a, b] or in [c, d] but not in the inter-

section of the two intervals, first determine whether x is in [a, b] then determine 

whether x is in [c, d]. If x is in neither or both intervals then the condition is 

false, otherwise the condition is true.  

   (h)    To determine whether two intervals of real numbers overlap, e.g. have a non-

empty intersection, first determine whether the smaller ends or the larger ends 

of the intervals coincide. If they do then the intervals overlap. Otherwise determine 

which interval starts to the left of the left end of the other, then determine 

whether the larger end of that interval is at or to the right of the smaller end of 

the other. If both those conditions are true then the intervals overlap, otherwise 

they do not.          



            Part II  
 Material Truth          

 Part II describes rules and criteria for combining knowledge of the factual truth or 

falsity of some statements, along with knowledge of logical forms, to determine the 

factual truth or falsity of other statements.        

  Chapter 8 Truth for Statements with at Most One Connective  

  Chapter 9 Truth for Statements with Multiple Connectives  

  Chapter 10 Tracing Program Execution       



 Chapter 8   
 Truth for Statements with at Most One 
Connective 

        This chapter describes truth conditions for atomic statements, quantified state-

ments, and compound statements with one connective. It concludes with several 

computing related applications. After studying this chapter you should be able to:

   1.    Use the truth conditions for the basic truth functional connectives to determine 

the truth value of a statement involving at most a single truth functional connec-

tive, given the truth values of its component parts.  

   2.    Understand the effect of short cut evaluation of “and” and “or” in programs, and 

determine when they are being used.  

   3.    Calculate using bitwise extensions of “not,” “and,” “or,” and “xor.”  

   4.    Apply bitwise extensions of truth functions to make and use masks and simple codes.      

  Outline 

  8.1 The laws of excluded middle and noncontradiction  

  8.2 Atomic Statements  

  8.3 Truth functional connectives 

  8.3.1 Negation  

  8.3.2 Conjunction  

  8.3.3 Disjunction  

  8.3.4 Material Equivalence  

  8.3.5 Material Implication   

  8.4 Conditions  

  8.5 Quantifi ed Statements  

  8.6 Summary of material truth conditions  

  8.7 Some Applications 

  8.7.1 Short cut evaluation: “cand” and “cor”  

  8.7.2 Bitwise extensions of truth functions 

  8.7.2.1 Bit functions that correspond to truth functions  

  8.7.2.2 Bitwise extensions of “not,” “and,” “or,” and “xor”  

  8.7.2.3 Computing applications of these extensions       
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  8.1 The Laws of Excluded Middle and Noncontradiction  

 The logic described in this book is based on two assumptions about truth and falsity. 

They are: 

  The Law of Excluded Middle : Every statement is either true or false. 

  The Law of Noncontradiction : No statement is both true and false. 

 The exact status of these “laws” has been the subject of debate among students 

of logic for at least 24 centuries. Here these laws are used as constraints on what 

logic can be applied to. The logic discussed here applies to closed statements that 

are either true or false but not both and it applies indirectly to open statements 

(conditions) that are true or false, but not both, of things. Most statements that are 

relevant to computing are of these types.  

  8.2 Atomic Statements  

 In the following definitions, the terms “materially true” and “materially false” 

will be used to in place of “true” and “false” in the ordinary sense of those terms 

The prefix “material” is used to emphasize that ordinary truth and falsehood are 

being discussed rather than “logical truth” and “logical falsehood.” Logical truth 

and logical falsehood are discussed in a later chapter. Outside of definitions, 

“true” and “false” are used without the prefix to represent the ordinary “material” 

kind of truth and falsity. 

  Definition 1 .  An  identifier  is any name or definite description. 

 The purpose of this definition is to avoid using the phrase “name or definite 

description” repeatedly. 

 Recall that an atomic statement consists of a predicate, P, and one or more iden-

tifiers, n 
1
 , n 

2
 , … n 

k,
 . The simplest predicates are true or false of individual things, 

e.g. the predicate “had wooden false teeth.” is often said to be true of George 

Washington. More complex predicates are true of ordered pairs of things, ordered 

triples of things, and so on.  

  Definition 2 .  If P is a predicate and n is an identifier then an atomic statement 
of the form P(n) is materially true just in case the thing named or described by 
n has the property P.  

  Example 1 .  For example, “Snow is white.” is true if and only if the thing named by 
“Snow” has the property of being white. This can also be expressed by saying that 
“Snow is white.” is true if and only if snow is white. The reason this sounds so trivial 
is that the truth of an English statement is being explained in English. If truth in 
German were the issue then it would not seem trivial to say: “Der himmel ist blau.” 
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is true (in German) because the thing named by “Der himmel” has the property of 
being blue.  

  Definition 2 continued .  Similarly, an atomic statement of the form   P(n 
1
 , n 

2,
 ) 

where P is a predicate and n 
1
  and n 

2
  are identifiers, is materially true just in case 

the ordered pair of things named or described by n 
1
  and n 

2
  have the property P. 

An atomic statement of the form P(n 
1
 , n 

2
 , n 

3
 ) is materially true just in case the 

ordered triple of things named or described by n 
1
 , n 

2
 , and n 

3
  have the property P, 

and so on.  

  Example 1 continued .  Similarly, “Three is larger than two” is materially true because 
the number named by “three” is larger than the number named by “two.” Moreover, 
“Kalamazoo is between Detroit and Chicago.” is materially true because the city named 
by “Kalamazoo” is between the city named by “Detroit” and the city named by 
“Chicago”.   

  8.3 Truth Functional Connectives  

 Recall that words or phrases used to form compound statements from one or more 

simpler statements are called  statement connectives , or just  connectives . For example, 

the connective “and” can be used with the statement “Today is Tuesday” and the 

statement “3 > 2” to form the compound statement “Today is Tuesday and 3 > 2.” 

Similarly “because” can be used to make a compound statement out of simpler 

ones, as in “John did not come to work today because he was on vacation.” 

  Definition 3 .  A statement connective which has the property that the truth value of a 
compound statement made using it is determined solely by the truth values its 
component parts, without regard to their meanings, is said to be a  truth 
functional connective . For example, if you know that “Today is Tuesday” is true 
then, since “3 > 2” is also true, you can infer that “Today is Tuesday and 3 > 2” is 
true. Moreover, if today is not Tuesday then you can infer that “Today is Tuesday and 
3 > 2” is false. On the other hand, knowing that the sidewalk is wet and that it rained 
this morning does not determine the truth value of “The sidewalk is wet because it 
rained this morning.” Connectives like “because” are said to be  non truth functional 
connectives .  

  Definition 4 .  Associated with each truth functional connective is a function that 
describes how the truth values of component parts of a statement determine the 
truth value of a compound statement formed using that connective. Such a function 
is called a  truth function . The truth functions associated with “not”, “and”. “or”, “if 
and only if”, and “if then” are defined in the next sections. 

 In these definitions L and R can be replaced by any statements. L is to the left 

of the connective and R is to the right of the connective.  
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  8.3.1 Negation 

 Recall that one statement is said to be the  negation  of another just in case the former 

expresses the claim that the latter is not the case. For example, if P represents the 

statement “Today is Tuesday.” then the negation of P is “It is not the case that today 

is Tuesday.” This is normally written “Today is not Tuesday.” 

  Definition 5 .  If R is any statement then “not R” is materially true (false) just in case 
R is materially false (true). 

 This definition can also be expressed in the form of a function definition table, 

called a truth table. In these tables “T” and “F” represent “true” and “false.” This 

table defines the negation function. 

 R  not R 

 T  F 

 F  T 

 Reading left to right, the last two rows of the table represent the fact that if R is 

true then “not R” must be false, while if R is false than “not R” must be true.   

  8.3.2 Conjunction 

 Recall that a statement of the form “L and R” is called a conjunction. 

  Definition 6 .  If L and R are any two statements then “L and R” is materially true 
just in case L is materially true and R is materially true. 

 This definition can also be expressed in the form of the following function defi-

nition table. 

 L R  L and R 

 T T  T 

 T F  F 

 F T  F 

 F F  F 

 On the lower left, each of the last four rows of this table describe some combina-

tion of truth values for L and R. On the right the corresponding truth value of 

“L and R” is given.   
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  8.3.3 Disjunction: Inclusive and Exclusive 

 Recall that a statement of the form “L or R” is called a disjunction. Disjunction is a 

bit trickier than conjunction because there are two kinds, inclusive and exclusive. 

  Definition 7 .  If L and R are any two statements then “L or R,” in the inclusive sense 
of “or,” is materially true just in case at least one of them is materially true. 

 For example, if you are eating at home, your spouse might say “You can have pie 

for dessert or you can have ice cream for dessert.” and you might reply with “I think 

I will have both.” Moreover, in mathematics and computing the inclusive sense of 

disjunction is what is normally used. The corresponding function definition table is: 

 L R  L or R 

 T T  T 

 T F  T 

 F T  T 

 F F  F 

  Definition 8 .  If L and R are any two statements then “L or R,” in the exclusive 
sense of “or,” is materially true just in case one of them is materially true and 
the other is materially false. 

 Exclusive disjunction is sometimes indicated by adding “but not both” at the end 

of a statement. In most cases exclusivity is implicit, as on a restaurant menu which 

says that for $5 you can have a sandwich and a beverage or dessert. For $5 you 

expect to get a sandwich and either a beverage or dessert, but not both a beverage 

and a dessert. In contexts where it is desirable to have a separate word for the exclu-

sive sense of or, the word “xor” is used. Since exclusive disjunction is used so rarely 

here, no symbolic abbreviation for it will be use. 

 The truth table for exclusive disjunction is: 

 L R  L x or R 

 T T  F 

 T F  T 

 F T  T 

 F F  F 

  8.3.4 Material Equivalence 

 Recall that statements of the form “L if and only if R” are called biconditional state-

ments or just biconditionals. 
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  Definition 9 .  If L and R are any two statements then “L if and only if R” is 
materially true just in case both L and R have the same truth value. Moreover, if “L 
if and only if R” is materially true than L and R are said to be  materially equivalent , 
otherwise they are  materially inequivalent . 

 In English the connective used to express equivalence is the phrase “if and 

only if” (sometimes abbreviated “iff”), as used for example, in “Today is pay-

day if and only if today is Friday.” The phrase “just in case” is also used to 

express equivalence, as in “You win the prize just in case your number is the 

first one drawn.” 

 The truth function associated with material equivalence is shown in the following 

table. 

 L R  L if and only if R 

 T T  T 

 T F  F 

 F T  F 

 F F  T 

 Material equivalence is normally used to express interesting facts about the world. 

While “All people are animals if and only if 3 < 5” is materially true, because both 

parts of it are true, it is such an uninteresting fact that it sounds odd even to mention it. 

On the other hand, if “Today is payday if and only if today is Friday” were true then 

that would be an interesting fact and is likely to be mentioned.  

  Exercise 1 .  Determine which of the statements below are materially equivalent. 
Explain your answers. Assume the numbers referred to here are all nonnegative 
integers. Hint: first determine which statements are true and which are false.

   (a)    There are odd numbers.  

   (b)    There are numbers which are both even and odd.  

   (c)    If a number is even and prime than it is not odd.  

   (d)    If a number is prime and not even than it is odd.  

   (e)    Every number is odd.  

   (f)    Every number is either odd or even.  

   (g)    Every number identical to 3 is prime.  

   (h)    There is a number identical to 3 which is prime.  

   (i)    The smallest prime number is 2.  

   (j)    The smallest even prime number is 2.      

  Exercise 2 .  Assume that P is true and Q is false. For each pair of statements below 
determine whether the one on the left is materially equivalent to the one on the 
right. Note that in each case this requires only a simple truth value calculation, not 
the construction of a whole truth table. 
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     (a) P     Q  

  (b) P or Q     Q  

  (c) P and Q     Q  

  (d) P and not Q     Q        

  8.3.5 Material Implication 

 Recall that statements of the form “If L then R” are sometimes called conditional 

statements or just conditionals. 

  Definition 10 .  If L and R are any two statements then “ If L then R ”  is materially 
true  if and only if it is not the case that L is materially true and R is materially 
false. Moreover if “If L then R” is materially true then we say that  L materially 
implies R . 

 This may seem like an odd concept at first, but it turns out to be very useful and 

very important. The connective “implies” is also commonly used to express mate-

rial implication, as in “L implies R.” Unfortunately, this use of “implies” is often 

confused with logical implication, discussed later. 

 The truth function associated with material implication is described in the 

following table. 

 L R  If L then R 

 T T  T 

 T F  F 

 F T  T 

 F F  T 

 This truth table represents only one way in which people use the term “implies.” 

For example, it does not represent the causal sense in which “thunder implies 

lightening.” However, the truth function defined by this table does represent most 

uses of “if then” in mathematics and computer science.  

  Exercise 3 .  Determine which of the statements below materially imply which 
others. Explain your solution.

   (a)    There are odd numbers.  

   (b)    There are numbers which are both even and odd.  

   (c)    If a number is even and prime than it is not odd.  

   (d)    If a number is prime and not even than it is odd.  

   (e)    Every number is odd.  

   (f)    Every number is either odd or even.  

   (g)    Every number identical to 3 is prime.  
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   (h)    There is a number identical to 3 which is prime.  

   (i)    The smallest prime number is 2.  

   (j)    The smallest even prime number is 2.      

  Exercise 4 .  Assume that P is true and Q is false. For each pair of statements below 
determine whether the one on the left materially implies the one on the right. Then 
determine whether the one on the right materially implies the one on the left. Note 
that in each case this requires only a simple truth value calculation, not the 
construction of a whole truth table. 

     (a) P     Q  

  (b) P and Q     Q  

  (c) P or Q     Q  

  (d) If P then Q     Q      

 Statements which express material implication are sometimes called  hypotheti-
cal statements . If “P implies Q” is such a statement then the P part is called the 

 hypothesis  or  antecedent  and the Q part is called its  consequent . Statements of this 

form are also called  conditional statements . In that case P is called the condition of 

the statement. 

 This may give rise to some confusion because there are “conditional statements” 

in most programming languages. In this book what you have in programming 

languages are called “ conditional instructions ” to distinguish them from conditional 

statements in the logical sense. Conditional statements are either true or false while 

conditional instructions are either executed or not executed. You may agree or disa-

gree with a conditional statement, but it would be silly to agree or disagree with a 

conditional instruction. For example, “If you have a toothache then your blood 

pressure will be elevated.” is a conditional statement while “If you have a toothache 

then take two aspirin and call me in the morning.” is a conditional instruction. Both 

conditional statements and conditional instructions have conditions, but the second 

part of a conditional statement is a statement while the second part of a conditional 

instruction is an instruction.    

  8.4 Conditions  

  Definition 11 .  If P is a 1-place predicate and x is a variable or open definite 
description with one variable then the condition P(x) is true of all and only those 
things which have property P. Similarly, a condition P(x, y) is materially true of those 
ordered pairs of things that have property P. A condition P(x, y, z) is materially true 
of those ordered triples of things that have property P, and so on for any finite number 
of variables. A condition that is not materially true of something is materially false of 
that thing. 

 For example, the condition “x is red” is true of all and only red things. The condi-

tion “x is taller than y” is true of exactly those ordered pairs of things such that the 
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first is taller than the second. The condition “x is between y and z” is true of just those 

ordered triples of things such that the first is between the second and the third.   

  8.5 Quantified Statements  

  Definition 12 .  A universally quantified statement, ∀xP(x), is materially true just 
in case the condition P(x) is materially true of everything. An existentially quantified 
statement, ∃xP(x), is materially true just in case the condition P(x) is materially true 
of something. 

 For example, the statement “Everything is identical to itself.,” expressed 

“∀x(x = x)” is true because the condition “x = x” is true of everything. Similarly 

“Something is equal to 3.,” expressed “∃x(x = 3)”, is true because the condition “x 

= 3” is true of something, namely 3.  

  Exercise 5 .  Use the definitions above to determine which of the statements below 
are materially true and which are materially false.  

   (a)    There are odd numbers.  

   (b)    There are numbers which are both even and odd.  

   (c)    If a number is even and prime than it is not odd.  

   (d)    If a number is prime and not even than it is odd.  

   (e)    Every number is odd.  

   (f)    Every number is either odd or even.  

   (g)    Every number identical to 3 is prime.  

   (h)    There is a number identical to 3 which is prime.  

   (i)    The smallest prime number is 2.  

   (j)    The smallest even prime number is 2.     

 If the intended interpretation of a statement has a finite domain then universally 

quantified statements are equivalent to conjunctions. For example, consider “All 

odd numbers greater than 1 and less than 9 are prime.” The domain of the intended 

interpretation is the set of odd numbers greater than 1 and less than 9, i.e. {3, 5, 7}. 

So “All odd numbers greater than 1 and less than 9 are prime” is equivalent to “(3 

is an odd number greater than 1 and less than 9 and 3 is prime) and (5 is an odd 

number greater than 1 and less than 9 and 5 is prime) and (7 is an odd number 

greater than 1 and less than 9 and 7 is prime).” 

 Similarly, if the intended interpretation of a statement has a finite domain then 

existentially quantified statements are equivalent to disjunctions. For example, 

consider again “Some odd numbers greater than 1 and less than 9 are prime.” 

The domain of the intended interpretation is the set of odd numbers greater than 1 and 

less than 9, i.e. {3, 5, 7}. So “Some odd numbers greater than 1 and less than 9 are 

prime” is equivalent to “(3 is an odd number greater than 1 and less than 9 and 3 is 

prime) or (5 is an odd number greater than 1 and less than 9 and 5 is prime) or 

(7 is an odd number greater than 1 and less than 9 and 7 is prime).”  
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  Exercise 6 .  Identify the domain of the intended interpretation for each of the 
following statements, say whether it is finite or infinite, and if it is finite then write 
the statement as a conjunction or disjunction. Let S = {2, 3, 4, 5}

   (a)    All prime numbers are odd.  

   (b)    All prime numbers are even.  

   (c)    Some prime numbers are odd.  

   (d)    Some prime numbers are even.  

   (e)    All elements of S are prime numbers.  

   (f)    All elements of S are even numbers.  

   (g)    All prime numbers in S are odd.  

   (h)    All prime numbers in S are even.  

   (i)    All even numbers in S are prime.  

   (j)    All odd numbers in S are prime.       

  8.6 Summary of Material Truth Conditions  

 Definition MT (for Material Truth) and MTC (for Material Truth Condition) 

summarize the definitions given earlier in the chapter. 

  Definition MT .  If S is a statement then S is materially true if and only if

   (a)    S is an atomic statement, i.e. S is of the form “P(n 
1
 , n 

2
 , …, n 

k
 )” and P is a 

k-place predicate symbol, n 
1
 , n 

2
 , …, n 

k
  are identifiers, and the things named 

or described by by n 
1
 , n 

2
 , …n 

k
  (in that order) have the property P  

   (b)    S is a statement of the form “not P” and P is materially false  

   (c)    S is a statement of the form “P and Q” and both P and Q are materially true  

   (d)    S is of the form “P or Q” and P is materially true or Q is materially true  

   (e)    S is of the form “P if” and “only if Q” and both P and Q are materially true or 

both are materially false  

   (f)    S is of the form “If P then Q” and P is materially false or Q is materially true  

   (g)    S is of the form “∀xP(x)” and the condition P(x) is materially true of everything  

   (h)    S is of the form “∃xP(x)” and the condition P(x) is materially true of something  

   (i)    S is materially false if and only if it is not materially true  

      Definition MTC  . 

   (a)    A condition P(x) is materially true of those things that have property P.  

   (b)    A condition P(x, y)is materially true of those ordered pairs of things that have 

property P.  

   (c)    In general, a condition P(v 
1
 , v 

2
 , …v 

n
 ) is materially true of those n- tuples of 

things that have property P.  

   (d)     A condition is materially false of those things of which it is not materially true.     

 Truth tables can be used to determine how the truth value of a compound state-

ment depends on the truth values of its component statements. While making them 

might be tedious if the number of atomic statements is large, the procedure of 
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 making a truth table, if properly done, is guaranteed to come to an end after a finite 

number of steps and is guaranteed to determine which category a statement belongs 

to. Moreover there are decision procedures for various special classes of quantified 

statements, e.g. for statements having only a single quantifier. Unfortunately there 

is no such “mechanical decision procedure” for determining the material truth value 

of quantified statements in general.   

  8.7 Some Applications  

  8.7.1 Short Cut Evaluation: “cand” and “cor” 

 Some programming language compilers and interpreters use what is called “short 

cut evaluation” of conjunctions and disjunctions. For example, notice that in order 

to determine that “L and R” is false it is sufficient to know that L is false, without 

bothering to determine the truth value of R. Some program implementations do just 

that, i.e. if they determine that L is false they do not bother to evaluate the truth 

value of R. This saves a bit of time so that programs execute faster. The shortcut 

version of “and” is sometimes called “ cand ,” which is short for “conditional and.” 

The truth table for “cand” is given below, where “-” in the column under R indicates 

that the truth of R is not evaluated. 

 L  R  L cand R 

 True  True  True 

 True  False  False 

 False  –  False 

A similar trick can be done with disjunction based on the fact that in order to 

determine that “L or R” is true, it is sufficient to determine that L is true, without 

bothering to determine the truth value of R. This shortcut version of “or” is some-

times called “ cor ,” which is short for “conditional or.” The truth table for “cor” is:

 L  R  L cor R 

 True  –  True 

 False  True  True 

 False  False  False 

 In most cases using “cand” and “cor” speeds things up and does no harm. Occasi-

onally, however, it creates confusion, especially when trying to revise or debug a pro-

gram. For example, you would expect the truth value of “L and R” to be the same as 

the truth value of “R and L.” For example, consider instructions I
1
 and I

2
 below. 

   I 
1
 : If ((z = x/y) and (x < y)) then print “Hello world”  

  I 
2
 : If ((x < y) and (z = x/y)) then print “Hello world”    

 If normal evaluation of “and” is used then executing these two instructions 

should give the same result for all possible values of x, y, and z. Even if y = 0 they 
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should both result in a divide by zero error. But if short cut evaluation is used and 

if y = 0 and if “x < y” is false then I 
2
  will cause control to be passed to the next 

instruction without generating an error message, while I 
1
  will generate a divide by 

zero error message. 

 More generally, expecting “and” and “or” to be evaluated normally can lead to 

confusion about what happens when your programs are executed. For example, 

when testing or debugging a program, the confusion caused by not taking into 

account the difference between normal and short cut evaluation of “and” and “or” 

can be very frustrating. In some cases, you can turn short cut evaluation on or off, 

as a compiler option. Unless small amounts of time are very important, it is simpler 

to use normal evaluation, if you can. 

 A few programming languages such as Ruby have separate symbols for normal 

and shortcut evaluation of “and” and “or.” 

 In most cases you have no control over which evaluation method is used. Some 

compilers and interpreters use one and some use the other. In that case it would be 

helpful to know which one is being used so that you are not mislead about how 

instructions will be executed. You can easily tell whether short cut evaluation is 

being used by constructing and executing a simple program. For example: 

 #Line 02 generates error message if ordinary evaluation of “and” is 

#used. Prints “Shortcut used” and does not generate error 

#message if shortcut evaluation is used.

   01 x ← 1  

  02 If ((x > 1) and (x/0 = 5))  

  03  Print ‘x/0 = 5 should generate error message’  

  04 Else  

  05  Print ‘Shortcut used’  

  06 Endif    

  Exercise 7 .  Write a program to detect shortcut evaluation of “or.”  

  Exercise 8 .  Explain why your solution to Exercise 7 works.   

  8.7.2 Bitwise Extensions of Truth Functions 

  8.7.2.1 Bit Functions that Correspond to Truth Functions 

 Recall that the fundamental unit of digital information is the  bit , short for  binary 
digit . The binary digits are 0 and 1. One bit of information is represented by a single 

binary digit. Larger units of digital information are represented by sequences of 0s 

and 1s. For example, a sequence of eight 0s and 1s represents eight bits of informa-

tion, usually called a  byte . 
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 If 1 is identified with “true” and 0 with “false” then many important operations 

on digital information are essentially the same as truth functions. They are so similar 

that they are given the same names as the corresponding truth functions. For example, 

 inversion , i.e. converting 1 to 0 and 0 to 1, is often called “negation,” and is 

described below. Note its similarity to the truth table for negation. 

 L  Not L 

 1  0 

 0  1 

 Similarly there are bit versions of “and,” “or,” and “xor.” 

 L  R  L and R  L or R  L xor R 

 1  1  1  1  0 

 1  0  0  1  1 

 0  1  0  1  1 

 0  0  0  0  0 

  8.7.2.2 Extensions to Sequences of Bits 

 Operations on one or two bits of information at a time do not get you much in the 

way of information processing. These operations can be extended to sequences of 

bits by applying them repeatedly to the bits of successive columns. In the example 

for “not” below the first column applies the fact that the negation of “1” is “0,” the 

second column applies the fact that the negation of “0” is “1,” and so on. In the 

“and” example, the first column applies the fact that “1 and 0” = “0”, the second 

that “0 and 0” = 0, the third that “1 and 1” = “1”, and so on. 

 not   10110010  initial bit sequence

    01001101 bitwise negation of initial sequence

      10110010     10110010     10110010  

   and 00101101       or 00101101       xor 00101101   

   00100000     10111111     10011111         

  Exercise 9 .  Do the following bitwise calculations.

   (a)    not  11010110   

   (b)     11010110     

   and 01100101 

   (c)      11010110     

   or 01100101 

   (d)      11010110     

   xor 01100101    
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  8.7.2.3 Computing Applications 

  Masks 

  Definition 4 .  A  bit mask  is a pattern of bits used to modify selected bits of other 
patterns of bits. For example, using bitwise conjunction, the bit pattern 11110000 
can be used to set the rightmost four bits of any other eight bit pattern to zero, 
leaving the leftmost four bits unchanged, as is shown below. 

    10010101  initial bit pattern    

  and 11110000  bit mask

    10010000  result of bitwise “and” operation    

 Similarly, the mask 10101010 would preserve the values of the odd numbered bits 

of an eight bit sequence while setting the values of the even numbered bits to zero. 

 Bit masks can be used to control what happens during the execution of a program. 

For example, the mask 11110000 could be used to indicate that a particular user 

is allowed to modify the first four fields but is not allowed to modify the sec-

ond four fields of a data entry screen. Similarly, a user with mask 10101010 can 

modify fields in the odd numbered positions but not those in the even numbered 

positions.   

  Encryption and Decryption 

 Bitwise extensions of “xor” can be used to  encrypt  and  decrypt  information. 

The basic idea behind this coding scheme is that the information to be encrypted is 

first transformed into digital form, i.e. into a sequence of bits. An example would 

be eight bit per character ASCII encoding of ordinary texts, or bitmaps of images. 

The original sequence of bits is called the  plaintext . Another sequence of bits, 

called the  encryption key , is used to transform the plaintext into a sequence of 

bits different from the plaintext. The transformed plaintext is called the  cyphertext . 
The cyphertext is supposed to be difficult to decrypt unless you have a sequence of 

bits called the  decryption key  and you know what to do with it. The decryption key 

is used with the cyphertext to reconstruct the plaintext. The method described here 

uses the same key for encryption and decryption. Some more sophisticated methods, 

such as public key cryptography, use different keys. 

 The method described here is based on the following four equations, which you 

can verify by examining the bit function tables for “xor.”

   (1 xor 1) xor 1 = 1  

  (1 xor 0) xor 0 = 1  

  (0 xor 1) xor 1 = 0  

  (0 xor 0) xor 0 = 0    

 If P is a sequence of bits to be encrypted, called the plaintext, and K is any 

sequence of bits of the same length, called the key, then P xor K is called the 

cyphertext, C. The four equations displayed above imply that, in general, (P xor K) 
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xor K = P. Consequently, an encryption and decryption method can be described by 

two simple instructions.

   To encrypt P: C ← P xor K  

  To decrypt C: P ← C xor K    

 For example, suppose that the original plaintext is 11110000 and that the key is 

10110001. To encrypt the plaintext we compute the exclusive or of the plaintext and 

the key, as shown below.

   11110000 plaintext, P    

  xor  10110001  key, K

   01000001 cyphertext, C    

 The cyphertext can be decrypted by simply computing the exclusive or of the 

cyphertext and the encryption key. 

   01000001 cyphertext, C    

  xor 10110001   key, K

   1110000  plaintext, P    

  Exercise 10 .  Make your own example of a plaintext bit sequence and a key. Then 
encrypt it. Then decrypt your encryption. Check to be sure that you got the original 
message back.         



        Chapter 9   
 Truth for Statements with Multiple Connectives       

  This chapter shows how to do truth value calculations and make truth tables for 

statements with more than one connective. In the next chapter this material is applied 

to tracing program execution. After studying this chapter you should be able to:

   1.    Read and write correctly punctuated compound truth functions.  

   2.    Translate complex statements between informal and logical English.  

   3.    Make truth tables for compound truth functions.  

   4.    Use those truth tables to find the truth value of a complex statement given the 

truth values of its elementary components.  

   5.    Read truth tables from right to left in order to discover information about the 

elementary components of a statement, given information about the truth value 

of the whole statement.          

 Outline 

  9.1 Compound statements  

  9.1.1 Computing truth values of compound statements  

  9.1.2 Reducing the need for parentheses  

  9.1.2.1 Sequences of conjunctions and disjunctions, or negations  

  9.1.2.2 Precedence rule  

  9.2 How to make truth tables for compound statements 

  9.2.1 The four parts of a truth table  

  9.2.2 Organizing a truth table calculation   

  9.3 Reading truth tables from right to left     

  9.1 Compound Statements 

 Recall that a compound statement is a statement which is constructed using one or more 

connectives. For example, the following statement is constructed using “and” and “or.” 

 Today is Wednesday and it is hot or it is raining. 
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  9.1.1 Computing Truth Values of Compound Statements 

 If the connectives used to make a compound statement are all truth functional then 

the truth value of that compound statement is determined by the truth values of its 

component statements and the truth functions associated with its connectives. 

Calculating the truth value of a compound statement is done by starting with the 

truth values of its most elementary components and applying the truth tables for the 

connectives, gradually building up to the whole compound statement. In order to do 

this it is necessary to know the order in which the truth values of intermediate com-

ponent statements are to be evaluated. 

 Suppose, for example, that today is not Wednesday, that it is hot, and that it is 

raining. Is “Today is Wednesday and it is hot or it is raining.” true or false? That 

depends upon which connective you evaluate first. If “and” is evaluated first then, 

obviously, “Today is Wednesday and it is hot” is false but “it is raining” is true, so 

the whole statement is true. But if “or” is evaluated first then “it is hot or it is 

 raining” is true, but “Today is Wednesday” is false, so the whole statement is false. 

In spoken English we try to indicate which connective to evaluate first by speaking 

parts of the statement more rapidly than others, by pausing at certain points, and by 

saying one connective more loudly. For example, both statements below 

 Today is Wednesday and (pause) it is hot or it is raining. 

 Today is Wednesday AND (loudly) it is hot or it is raining. 

 would probably be understood to indicate that “or” is to be evaluated first, espe-

cially if the part after “AND” were spoken rapidly in an even tone of voice. On the 

other hand, both of these 

 Today is Wednesday and it is hot or (pause) it is raining. 

 Today is Wednesday and it is hot OR (loudly) it is raining. 

 would probably be understood to indicate that “and” is to be evaluated first, espe-

cially if the part before “OR” were spoken rapidly in an even tone of voice. 

 In written English we also have methods for indicating which connective to 

evaluate first. For example, 

 Today is Wednesday, and it is hot or it is raining. 

 indicates that “or” is to be evaluated first. On the other hand, 

 Today is Wednesday and it is hot, or it is raining. 

 indicates that “and” is to be evaluated first. Colons, semicolons, and commas are 

all used within compound written statements to indicate grouping. 

 While most English grammar teachers consider it barbaric, parentheses can be 

used to indicate which connective to evaluate first, as in the two statements 

below. 

 Today is Wednesday and (it is hot or it is raining). 

 (Today is Wednesday and it is hot) or it is raining. 
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 Barbaric or not, when logical issues are important, parentheses are sometimes 

used to indicate the order in which logical operations are to be performed. 

Parentheses always come in matched pairs and are used to enclose a complete 

statement. In logical contexts, just as in mathematics and computer programming, 

parentheses are used with the rule that the most deeply nested operations are done 

first. For example, let P, Q, and R represent particular statements. In the statement 

displayed below, the number above a connective indicates the level of “nesting” 

of that  connective, and the number below a connective indicates the order in 

which the connectives are to be evaluated. The level of nesting is the number of 

unmatched left parentheses to the left of the connective. The order of evaluation 

is to evaluate the most deeply nested first. Within a given level of nesting, con-

nectives are evaluated from left to right.  

   0 2 1 2 3 level of nesting  

  P and ((not Q) or (R and (not P)))  

  5 2 4 3 1 order of evaluation    

 If P were true, Q were false, and R were false then the steps of the calculation 

of the truth value of the whole statement could be expressed as follows:

   1.    “not” in “not P” is the most deeply nested, “P” is true, so “not P” is false  

   2.     “not” in “not Q” and “and” in “R and (not P)” are at the same level. The left to 

right evaluation order mentioned above requires “not” to be evaluated first. 

Since “Q” is false, “not Q” is true  

   3.     Now the “and” in “R and (not P)” can be evaluated. Since “R” is false and “not 

P” is false, “(R and (not P))” is false  

   4.    Since “not Q” is true, “(not Q) or (R and (not P))” is true  

   5.     Finally, since “P” is true and “(not Q) or (R and (not P))” is true, it follows that 

“P and ((not Q) or (R and (not P)))” is true     

 Since what is important in such a calculation is the truth values of the statements, 

this reasoning could be expressed more briefly thusly.

   1.    “not P”: is false because not true is false.  

   2.    “not Q”: is true because not false is true.  

   3.    “R and (not P)”: is false because false and false is false.  

   4.    “(not Q) or (R and (not P))”: is true because true or false is true.  

   5.    “P and ((not Q) or (R and (not P)))”: is true because true and true is true.     

  Exercise 1.   Describe a similar calculation assuming that P, Q, and R are all true. 

 Expressing these calculations in English as described above works, but it is hard 

to do, hard to read, and time consuming. Fortunately, such time consuming descrip-

tions are not necessary. In addition to parentheses, logicians have developed various 

other notations and ways of organizing calculations in order to make logic easier to 

use. For example, the calculation described above takes less space and is easier 

to understand as expressed below. 
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 0 2 1 2 3 level of nesting 

 P Q R P and ((not Q) or (R and (not P))) 

 T F F T F F T initial values 

 5 2 4 3 1 order of evaluation 

 F 1 

 T 2 

 F 3 

 T 4 

 T 5 

 This can be abbreviated as:

   P and ((not Q) or (R and (not P)))  

  T T T F T F F F T     

  Exercise 2 .  Express the result of Exercise 1 in summary form as shown above.   

  9.1.2 Reducing the Need for Parentheses 

 While parentheses are very useful, it is easy to get confused when you have several 

of them. Two ways of not needing so many of them, without introducing ambiguity, 

are described below. 

  9.1.2.1 Sequences of Conjunctions, Disjunctions, or Negations 

 If a statement is a sequence of conjunctions then the order in which the components 

are evaluated does not matter. For example, 

 “P and (Q and R)” always evaluates to the same value as “(P and Q) and R” no 

matter what values “P,” “Q,” and “R” have. Similarly, each of the following evalu-

ates to the same value in every case.  

   P and (Q and (R and S))  

  P and ((Q and R) and S)  

  (P and Q) and (R and S)  

  ((P and Q) and R) and S    

 Similar identities are true no matter how long the series of conjunctions. Conse-

quently, it is possible to omit parentheses in a series of conjunctions without creating 

ambiguity. So all four of the statements just displayed can be written “P and Q and R 

and S.” In case some order needs to be specified, the conjunctions are assumed to be 

evaluated from left to right, i.e. as described by “((P and Q) and R) and S.” 
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 Sequences of disjunctions are treated similarly. Remember, however, that a mix-

ture of conjunctions and disjunctions cannot be treated this way, e.g. under some 

circumstances, “P and (Q or R)” has a different truth value than “(P and Q) or R.” 

However, the precedence rule described below will allow one of these to be written 

without parentheses. 

 Finally, a sequence of negations needs no parentheses because it can only be 

punctuated one way. “not (not P)” cannot be written as “(not not) P” because 

 parentheses are only put around whole statements and “not not” is not a whole 

statement. So “not (not P)” can be written “not not P” and “not (not (not P))” can 

be written “not not not P” and so on.  

  9.1.2.2 Precedence Rules 

 The precedence rules of logic are like the precedence rules of arithmetic and algebra; 

they reduce the need for parentheses by indicating the order in which operations are to 

be evaluated when parentheses are absent. For example, in algebra multiplication and 

division are done before addition and subtraction, so that “a*b + c” is understood to 

abbreviate “(a*b) + c”. If you want the addition done first then you must use parenthe-

ses, as in “a*(b + c)”. Similarly, taking the additive inverse is done before multiplication, 

division, addition, and subtraction, so that “–a + b” is understood to abbreviate “(–a) + 

b”. If you want the addition done first then you must use parentheses, as in “–(a + b)”. 

Recall that precedence rules for truth functional connectives were introduced in Chap. 

2 where they were called parenthesis dropping conventions. They were:

   (a)    ~ has the highest precedence of all.  

   (b)    ∧, ∨, →, and ↔ have successively lower precedence.  

   (c)     Matching pairs of parentheses can be removed if doing so does not cause ambi-

guity as to how to restore them. In particular, the outermost pair of parentheses 

can be dropped. 

 Here are two more introduced in this chapter.  

   (d)    Operations at the same level of nesting are done from left to right.  

   (e)     As discussed above, parentheses can be omitted within a series of conjunctions, 

disjunctions, or negations.     

 Recall that using symbols for connectives and using capital letters to stand for 

individual statements allows the logical structure of compound statements to be 

described and reasoned about in much more compact and easy to understand 

forms than when English is used. For example, consider the following sequence 

of expressions.

   1.    Today is Wednesday and it is hot or it is raining  

   2.    (W and H) or R  

   3.    (W ∧ H) ∨ R  

   4.    W ∧ H ∨ R     
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 Expression 1 is English, with ambiguity regarding which connective to evaluate first. 

Expression 2 uses letters to represent statements and resolves ambiguity by using paren-

theses. Expression 3 uses symbols for the connectives. Expression 4 uses the precedence 

rule to remove parentheses. Notice the extent to which 4 emphasizes logically important 

features of the original statement, while de-emphasizing logically unimportant features. 

  Exercise 3 .  Write expressions like Expressions 2, 3, and 4 above for each of the follow-

ing statements. If the English is ambiguous about connectives, pick some reasonable 

order of evaluation and forge ahead. However, remember that in real life, if a statement 

is ambiguous, just picking some reasonable interpretation and forging ahead is likely to 

lead to misunderstandings. A good thing to do is to ask the author of the ambiguous 

statement what the intended meaning is. Here however you cannot do that.  

   (a)    Today is Wednesday and it is raining and it is hot.  

   (b)    Today is Wednesday or it is raining and it is not hot.  

   (c)    Today is not Wednesday and it is not raining and it is not hot.  

   (d)    Either today is Wednesday and it is not raining or it is not hot.  

   (e)    Today is Wednesday and either it is not raining or it is not hot.  

   (f)    It is not the case that today is Wednesday and it is raining and it is hot.  

   (g)    Today is Wednesday and it is not the case that it is raining or it is hot.      

  Exercise 4 .  Finish the table below by inserting parentheses in “not P and Q or R” 

so that the connectives are evaluated in the order specified. Do not change the order 

of the connectives or the elementary statements. 

  order  statement  

  not and or using precedence rules not using precedence rules   

 a. 1  2  3  not P and Q or R  ((not P) and Q) or R 

 b. 1  3  2 

 c. 2  1  3 

 d. 2  3  1 

 e. 3  1  2 

 f. 3  2  1  not (P and (Q or R))  not (P and (Q or R)) 

  9.2 How to Make Truth Tables for Compound Statements 

 Truth tables were used earlier to describe the truth functions associated with indi-

vidual truth functional connectives. Here truth tables are extended to describe the 

truth functions associated more complex statements. 

  9.2.1 The Four Parts of a Truth Table 

 To make a truth table for a compound statement start by drawing crossed horizontal 

and vertical lines. It helps to use graph paper. 
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 List of simple statements  Compound statement 

 List of all truth functionally

possible combinations of truth

values for the simple statements 

 Calculated truth values 

for compound 

statement 

 Then write the compound statement being analyzed in the upper right part of the 

table. In the upper left part list the elementary statements which make up the com-

pound statement. If you use letters to represent the elementary statements it is cus-

tomary to list them in alphabetic order. In the lower left part of the table put a 

column of Ts and Fs in such a way that every possible assignment of Ts and Fs for 

the elementary statements is represented by some row of Ts and Fs. If there are n 

elementary statements this will require 2 to the nth power rows of Ts and Fs. 

Finally, compute the truth value of the compound statement by using the truth 

tables for the basic connectives and the rules about the order in which connectives 

are to be evaluated. Record the results in the lower right part of the table. This 

whole process is easier to show by example that it is to describe in English. For 

example, the truth table for any statement of the form “P and (Q or R)” is 

 P Q R  P and (Q or R) 

 T T T   T   T 

 T T F   T   T 

 T F T   T   T 

 T F F   F   F 

 F T T   F   T 

 F T F   F   T 

 F F T   F   T 

 F F F   F   F 

 2  1 order of evaluation 

 Finally there is the issue of how to calculate the truth value of the compound 

statement for each row of the table. In this example column 1 (under “or”) repre-

sents an intermediate step and is just included to make the table easier to make and 

read. Column 2 (under “and”) is the only one that needs to be there. It is easier to 

fill in all of a column at once rather than to fill in the table row by row, because it 

is easier to remember the truth table for a single connective than to switch back and 

forth from one connective to another. 

  9.2.2 Organizing a Truth Table Calculation 

 In the lower left part of the table, each row is supposed to represent a different truth 

functionally possible combination of truth value assignments to the elementary state-

ments. One way to be sure they are all listed is to follow the steps listed below. 

  Step 1 :  Under the rightmost elementary statement put alternating Ts and Fs until 

you have 2 N  of them.  
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  Step 2 :  After finishing a column, move left one statement and write another column 

of alternating groups of Ts and Fs. In each new column the groups should be twice 

as long as in the column to its right, but there will be half as many groups. So in the 

second column there are pairs of Ts followed by pairs of Fs, in the third column 

there are quadruples of Ts followed by quadruples of Fs and so on. Keep repeating 

this pattern until you run out of elementary statements. 

 It follows from Step 1 than that as the number of elementary statements increases 

by one, the number of rows in the truth table doubles, as shown in the table below. 

 Elementary statements  Rows in truth table 

  1    2 

  2    4 

  3    8 

  4   16 

  5   32 

  6   64 

  7   128 

  8   256 

  9   512 

 10  1,024 

 Here is another example, this time with four elementary statements.  

 Q R S T  (S Ù T) Ú ~ ((Q Ù R) Ú S)

  T T T T  T  T  F T T 

  T T T F  F  F  F T T 

  T T F T  F  F  F T T 

  T T F F  F  F  F T T 

  T F T T  T  T  F F T 

  T F T F  F  F  F F T 

  T F F T  F  T  T F F 

  T F F F  F  T  T F F 

  F T T T  T  T  F F T 

  F T T F  F  F  F F T 

  F T F T  F  T  T F F 

  F T F F  F  T  T F F 

  F F T T  T  T  F F T 

  F F T F  F  F  F F T 

  F F F T  F  T  T F F 

  F F F F  T  T  T F F 

   Exercise 5 .  Make a truth table for each compound statement form below. 

Indicate which is the final column.   

   (a)    ~(~P)  

   (b)    ~(~(~P))  
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   (c)    P Ú (P Ù Q)  

   (d)    P Ù (P Ú Q)  

   (e)    (P Ú Q) Ù ~P  

   (f)    (P Ù Q) Ú (Q Ù P)  

   (g)    (Q Ú (~Q))  

   (h)    P Ú (~P)  

   (i)    P Ù (~P)       

  9.3 Reading Truth Tables from Right to Left 

 Reading a truth table from left to right allows you to tell the truth value of a com-

pound statement if you know the truth values of its component statements. Reading 

a truth table from right to left can give you some information about the truth values 

of the component statements if you know the truth value of the compound state-

ment. For example, if you know that “P and (Q or R)” is true then, by investigating 

those rows in which its truth value is “T,” you tell that P is true and that Q or R or 

both are true. Additionally, if the compound statement is false, then either P is false 

and Q and R can have any truth values or, P is true and both Q and R are false. 

 P Q R  P and (Q or R) 

 T T T   T   T 

 T T F   T   T 

 T F T   T   T 

 T F F   F   F 

 F T T   F   T 

 F T F   F   T 

 F F T   F   T 

 F F F   F   F 

 The last example is so obvious that you may not even need to examine its truth 

table. However, if the compound statement is more complex you will probably need 

to examine its truth table. For example, without looking at the truth table below, if 

“(P or not Q) and ((Q or not R) or (R and not P))” were true, what could you deter-

mine about the truth values of P, Q, and R? 

 P Q R  (P or not Q) and ((Q or not R) or (R and not P)) 

 T T T  T  T  T   T   F 

 T T F  T  T  T   T   F 

 T F T  T  F  F   F   F 

 T F F  T  T  T   T   F 

 F T T  F  F  T   T   T 

 F T F  T  T  T   T   F 

 F F T  F  F  F   T   T 

 F F F  T  T  T  T  F 
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  Exercise 6 .  For each of the following, try to determine what you can about the truth 
values of the component statements in case the compound statement is true. Then 
check your answers by finding or constructing a truth table for each one.   

   (a)    ~(~P)  

   (b)    ~(~(~P))  

   (c)    PÚ (P Ù Q)  

   (d)    P Ù (P Ú Q)  

   (e)    (P Ú Q) Ù ~P  

   (f)    (P Ù Q) Ú (Q Ù P)  

   (g)    (Q Ú (~Q))  

   (h)    P Ù (~P)  

   (i)    (Q Ú ~P) Ù P  

   (j)    (Q Ú ~P) Ù (P Ú ~Q)  

   (k)    (Q Ú ~P) Ù ~Q     

  Exercise 7 .  For each of the following, try to determine what you can about the truth 
values of the component statements in case the compound statement is false. Then 
check your answers by finding or constructing a truth table for each one.   

   (a)    ~(~P)  

   (b)    ~(~(~P))  

   (c)    P Ú (P Ù Q)  

   (d)    P Ù (P Ú Q)  

   (e)    (P Ú Q) Ù ~P  

   (f)    (P Ù Q) Ú (Q Ù P)  

   (g)    (Q Ú (~Q))  

   (h)    P Ù (~P)  

   (i)    (Q Ú ~P) Ù P  

   (j)    (Q Ú ~P) Ù (P Ú ~Q)  

   (k)    (Q Ú ~P) Ù ~Q         



        Chapter 10   
 Tracing Program Execution 

        This chapter shows a few ways to apply the material in Chaps. 8 and 9 to tracing 

program execution. Pseudocode is used in place of a real programming language 

so that no background in any particular programming language is required. After 

studying this chapter you should be able to use truth functions to trace execution 

of programs forwards and backwards, no matter what programming language 

you use.  

 Outline

    10.1 Tracing program execution forwards  

  10.2 Tracing program execution backwards     

  10.1 Tracing Program Execution Forwards  

 To trace the execution of an algorithm (or program) is to determine exactly what 

would happen if that algorithm were to be executed for specific input data. When 

tracing is done by hand it is normally recorded in a table, called a trace table. 

Most program development environments have automated trace facilities which 

take much of the drudgery out of tracing long and complex programs. Here we 

are concerned with simple algorithms and hand tracing, sometimes called  desk 
checking . 

 The ability to trace the execution of a small algorithm, without running it on a 

computer, is fundamental to understanding what the algorithm does. If you can’t 

trace it yourself by hand then you do not understand it. Often, doing a trace, while 

tedious, will help you understand the algorithm. Understanding it is of course a 

prerequisite for reasoning correctly about it. 
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  10.1.1 Event Trace Tables 

 We begin with an example of a full event (or execution) trace using the algorithm 

MaxOf displayed below, using “#” to indicate comments and “←” for assignment 

of values to variables. 

    0    Algorithm MaxOf (LIST, N, MAX)

    # precondition: LIST is a nonempty list of numbers of length N  

   # Postcondition: Returns the maximum element of LIST.

     # Initialize MAX to be first element of LIST        

   1     MAX ¬ LIST[1]  

   2     K ¬ 2

     # Examine the remainder of LIST, keeping track of the  

    # largest element so far encountered in MAX.     

   3     While K <= N do  # ‘<=’ means ‘<’ or ‘=’   

   4      If MAX < LIST[K] Then MAX ¬ LIST[K] End If  

   5      K ¬ K + 1  

   6     Repeat  

   7     Return MAX # MAX is now the maximum element of LIST. 

 End Algorithm     

  Example 1 .  A full event (execution) trace table 

 A full event (or execution) trace of MaxOf applied to the input data set <3 4 6 2 > 

is recorded in the table below. The process of doing the trace consists of making 

this trace table.

 Instruction executed  Resulting event  Remarks 

 MaxOf (LIST, N, MAX)  LIST ¬ 3 4 6 2  Initialize 

 N ¬ 4  Variables 

 MAX ¬ LIST[1]  MAX ¬ 3 

 K ¬ 2  K ¬ 2 

 While K <= N do  K found to be <= N = 4  Start loop 

 If MAX < LIST[K]  MAX = 3 < LIST[2] = 4 

 Then MAX ¬ LIST[K]  MAX ¬ 4 

 End If 

 K ¬ K + 1  K ¬ 3 

 While K <= N do  K found to be <= N = 4  Repeat loop 

  If MAX < LIST[K]  MAX = 4 < LIST[3] = 6 

  Then MAX ¬ LIST[K]  MAX ¬ 6 

  End If 

  K ¬ K + 1  K ¬ 4 

 While K <= N do  K found to be <= N = 4  Repeat loop 

  If MAX < LIST[K]  MAX = 4 not < LIST[4] = 2 

  Then MAX ¬ LIST[K]  so no action 



10.1 Tracing Program Execution Forwards  107

 Instruction executed  Resulting event  Remarks 

  End If 

  K ¬ K + 1  K ¬ 5 

 While K < = N do  K found to be > N  End loop 

 Repeat  so skip loop body 

 Return  exit algorithm with  Done! 

 MAX = 6 

 Although tedious, doing a step by step trace by hand of the execution of an 

algorithm forces whoever does it to pay attention to all the details. This way errors 

in the algorithm can sometimes be detected that would be missed by a less detailed 

examination of it. 

 Obviously, doing a full execution trace such as the one above would take a 

very long time with an algorithm of any complexity. Moreover, having to write 

so many things down is itself likely to lead to errors. As a result people gener-

ally take various shortcuts. One shortcut is to list only the line numbers of the 

instructions rather than the instructions themselves. Another shortcut is to be a 

bit less detailed about the values of variables. In this case the resulting table 

would look like this: 

  Example 2 .  An abbreviated event (execution) trace table

 Stmt.  Resulting event  Remarks 

 0  LIST ¬ 3 4 6 2 and N ¬ 4  Initialize 

 1  MAX ¬ 3 

 2  K ¬ 2 

 3  K < = N  Start loop 

 4  MAX < LIST[2] so MAX ¬ 4 

 5  K ¬ 3 

 3  K < = N  Repeat loop 

 4  MAX < LIST[3] so MAX ¬ 6 

 5  K ¬ 4 

 3  K < = N  Repeat loop 

 4  MAX not < LIST[4] so no action 

 5  K ¬ 5 

 3  K > N so skip loop body  End loop 

 7  Exit algorithm with MAX = 6  Done! 

  10.1.2 Value Trace Tables 

 Another kind of shortcut is to record only certain kinds of events, such as transfer 

of control, output, or the assignment of values to variables. A trace that records only 



108 10 Tracing Program Execution  

the assignment of values to variables is called a value trace or a variable trace. Done 

as a value trace the example above could be represented as follows. 

  Example 3 .  An abbreviated value trace table

 Stmt.  LIST  N  MAX  K  Remarks 

 0  3 4 6 2  4  ?  ?  Initialize 

 1  4  3  ? 

 2  4  3  2 

 4  4  4  2 

 5  4  4  3 

 4  4  6  3 

 5  4  6  4 

 5  4  6  5  Done! 

 Note that the value of N does not change. Variables whose values do not change 

are usually not given their own column in a value trace table.  

  Exercise 1 .  Do a value trace table of just P and MIN for the following algorithm, 

with LIST = < 7, 3, 5, 1 >.  

   0     Algorithm FindMin(LIST, N, MIN)

    # Preconditons: LIST is a list of N numbers with N > = 1.  

   # Postcondition: MIN is the smallest element of LIST.     

   1    P ¬ 1 # P points to the next element of LIST  

   2    MIN ¬ LIST[P]  

   3    While P < = N DO  

   4    If LIST[P] < MIN Then MIN ¬ LIST[P] EndIf  

   5    P ¬ P + 1  

   6    Repeat  

   7    Return MIN     

  EndAlgorithm  

  Exercise 2 .  Do a value trace table for FindMin with LIST = < 3, 7, 1, 5 >.   

  10.1.3 Tracing with Complex Conditions 

 Your ability to trace the execution of many programs depends on your being able 

to do truth value calculations involving conjunction, disjunction, and negation. For 

example, suppose the following program fragment is executed, starting with x = 3, 

y = 5, and z = 7.  
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   …  

  01 If not (2 * x > z) then y ¬ y + 1 Endif  

  02 x ¬ y + z  

  03 If ((z < x + y) and (x > y)) Print (‘This is silly’) EndIf  

  04 While ((x < 3 * y) or (y = x))  

  05 x ¬ x + 5  

  06 y¬ y + 1  

  07 Print (x, y, z)  

  08 EndWhile  

  …    

 What would be printed as a result of executing this program fragment? What would 

the final values of x, y, and z be? While these are not difficult questions, finding their 

answers certainly does depend upon knowing how to deal with the truth functions 

associated with “and,” “or,” and “not.” Note the column reserved for “output” in this 

table. The beginning of a trace table for executing that program fragment is:

 Line  x  Y  Z  Output  Comments 

 Initially   3  5  7 

 1   3  6  7  ~(2 * 3 > 7), so y ¬ y + 1 

 2  13  6  7 

 3  13  6  7  This is silly 

 4  13  6  7  13 < 3 * 6 and not x = y 

 5  18  6  7 

 6  18  7  7 

  Exercise 3 .  Finish the trace table above.  

  Exercise 4 .  Do a similar trace table but with x = 6, y = 4, and z = 8.  

  Exercise 5 .  Do a similar trace table but with x = 7, y = 5, z = 3  

  Exercise 6 .  Do a similar trace table but with x = 0, y = 0, z = 0    

  10.2 Tracing Program Execution Backwards  

 Occasionally it is useful (or fun) to try to execute a program in reverse. For exam-

ple, if a program crashes or outputs an incorrect value as some point, executing 

backwards from that point can help diagnose the source of the error. 

  Example 4 .  Consider the instruction, I, below. What can you tell about the value of 

the variable a before I is executed from knowing the value of x after I is 

executed? 
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 I If (a > 0) then x ¬ 3

   1.    After I is executed, either x = 3 or x not = 3.  

   2.    Suppose x not = 3 after I.

   1.    Then the condition (a > 0) was false before I, else x would = 3.  

   2.    So before I, a < = 0.      

   3.    On the other hand, if x = 3 after I, nothing can be determined about the value of 

a before I. To see this consider the following

    1.    If before I, a < = 0 and x = 3 then after I is executed x will still = 3.  

    2.    If before I, a > 0 then x ¬ 3, so after I, x = 3.  

    3.    Hence knowing x = 3 after I is consistent with any value of a before I.          

  Example 5 .  What can you tell about the values of a and b before instruction I, given 

what I prints?  

   I  If ((a > 0) or (b < 0)) then

   Print “yes”     

  else

   Print “no”     

  endif   

    1.     If I prints “yes” then the condition ((a > 0) or (b < 0)) must have been true before I.  

    2.     Hence a > 0 or b < 0 (or both) before I.  

    3.     On the other hand if I prints “no” then ((a > 0) or (b < 0)) was false before I.  

    4.     Hence both a > 0 and b < 0 were false before I.      

  Example 6 .  Consider the sequence of instructions I
1
, I

2
. 

    I 
1
 : If ((a = 0) and (b = 0)) then

     b ← 5     

  else

     b ← 0     

  endif     

   I 
2
:  if (not (a = 0 or b > 0) or (a = 3)) then

     c ← 7     

  else

     c ← 4     

  endif    

 Suppose just after executing I
2
, c = 4. What can you tell about the value of a just 

before I
1
 is executed? 

 Working backwards, using the truth tables described earlier in the chapter, it can 

be seen that:

    1.     Since c = 4 after I
2
, the else clause of I

2
 was executed.  

    2.     Hence (not(a = 0 or b > 0) or (a = 3)) is false before I
2
 (and after I

1
).  
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    3.     Since this is a false disjunction, both parts are false.  

    4.     Hence not(a = 0 or b > 0) is false and a = 3 is false at end of I
1
.  

    5.     Hence a = 0 is true or b > 0 is true, and a = 3 is false after I
1
.  

    6.     Moreover, after I
1
 either b = 0 or b = 5.  

    7.     If b > 0 is true after I
1
, the condition of I

1
 was true before I

1
.  

    8.     So if b > 0 after I
1
, b = 0 and a = 0 before I

1
.  

    9.     And if not b > 0 after I
1
 then the condition of I

1
 was false before I

1
.  

   

 Notice that the conclusion of the argument above was not at all obvious at 

the beginning of the argument. Much of the power of logic comes from argu-

ments of this sort that allow people to deduce new, hidden, implicit facts from 

known facts.  

  Exercise 7 .

     I: If((a = 0) and not(b = 0)) or (b = 0 and not(a = 0)) then

    Print “yes”     

  else

    Print “no”     

  endif    

    (a)    If a and b are both = 0 before I, what will I print? Why?  

   (b)    If a and b are both = 1 before I, what will I print? Why?  

   (c)    If a = 0 and b = 7 before I, what will I print? Why?  

   (d)     If a = 0 before I and I prints “no” then what can you tell about the value of b 

before I? Explain.      

  Exercise 8 .

     I: If not(a = 0 and b < > 0) and not(b = 0 and c < > 0) and c = 0 then

   Print “yes”     

  else

   Print “no”     

  endif   

   (a)    If a = b = c = 0 before I what will I print? Why?  

   (b)    If I prints “yes” what can you say about the values of a, b, and c? Why?  

   (c)    If I prints “no” what can you say about the values of a, b, and c? Why?  

   (d)    If a > b > c = 0 before I, what will I print? Why?      

  Exercise 9 .  Assume that the variables a and b have been assigned numeric values 

before I 
1
  followed by I 

2
  are executed. Let A represent the condition a = 0 and B 

represent the condition b = 0. For each of the four possible pairs of truth values for 

A and B, what can you say about the numeric values of c and d after the following 

two instructions are? Why?  
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    I 
1
 : If not(a = 0 and b < > 0) then

     c ← 0     

    else

   c ← 3     

  endif      

   I 
2
 : If not(b = 0 and c < > 0) then

     d ← 2     

   else

     d ← 4     

   endif   

   (a)    A and B both true.  

   (b)    A true, B false  

   (c)    A false, B true  

   (d)    A and B both false.  

      Exercise 10 .  Given the following instructions from the middle of a program and 

assuming that a, b, and c have been assigned values before I 
1
 . 

 I 
1
 : if a = 0 then b ← 1 else b ← 0 endif # So b = 0 or b = 1 

 I 
2
 : if b < > 0 then c ← 0 else c ← 1 endif # So c = 0 or c = 1

   (a)    If c = 0 after I 
2
  what can you say about a and b before I 

1
 ?  

   (b)    If c = 1 after I 
2
  what can you say about a and b before I 

1
 ?          



            Part III  
 Logical Truth       

 Parts I and II were about specific statements expressed in informal English and how 

to express their logical form in aid of determining their material truth or falsity. In 

Part III there is an important shift in perspective. From now on, emphasis is on logical 

forms themselves, rather than specific statements which have those forms. The 

reason for this is that much of what we know about correct reasoning involves using 

forms of statements rather than using their material truth values. 

 Part III describes rules and criteria for determining logical properties of state-

ments by analysis of the logical forms of those statements, without regard to their 

material truth or intended meaning. A notation similar to logical English is intro-

duced to represent logical forms and to express rules and criteria for evaluating 

logical properties and relations such as consistency, redundancy, and equivalence of 

statement forms as well as correctness of arguments.        
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  Chapter 19 Program Correctness Proofs  
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 Chapter 11   
 Truth Functional Forms       

    In previous chapters the logical forms of specific statements expressed in English were 

discussed in aid of reasoning about their material truth values. Here, and in subsequent 

chapters there is an important shift in perspective. From now on, emphasis is on logical 

forms themselves, rather than specific statements which have those forms. The reason 

for this is that much of what we know about correct reasoning depends on forms of 

statements rather than material truth. After studying this chapter you should be able to:

   1.    Describe and use truth functional forms.  

   2.    Describe and give examples of interpretations for truth functional forms.  

   3.    Describe the conditions under which truth functional forms are said to be true or 

false for a given interpretation.  

   4.    Distinguish among truth functionally true, false, and contingent forms.  

   5.    Use properties of truth functional forms to help determine the logical status of 

statements expressed in English.  

   6.    Use logical properties of forms to simplify statements and conditions.        

 Outline 

  11.1 Overview  

  11.2 Truth functional forms  

  11.3 Interpretations of truth functional forms  

  11.4 Truth under an interpretation  

  11.5 Truth functional truth, falsity, and contingency  

  11.6 Using forms to fi nd the logical status of English statements  

  11.7 Application to simplifying statements and conditions  

  11.1 Overview 

 Consider the following statements:

   (a)    It is raining or it is not raining.  
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   (b)    Today is Tuesday or today is not Tuesday.  

   (c)    The Moon is green or the Moon is not green. 

 All of them are true. Moreover their truth does not depend upon ordinary facts. 

For example, you don’t have to know anything about the weather to know that it is 

raining or it is not raining. Similarly you do not have to know the day of the week 

to know that today is Tuesday or today is not Tuesday. And you don’t have to know 

anything about the Moon to know that the Moon is green or the Moon is not green. 

Statements like this are said to be necessarily true. 

 Another feature these examples share is that they all have the same form, i.e. 

they are all a disjunction of a statement and the denial of that statement. In fact, it 

is easy to see that all statements of that form are necessarily true. 

 Now consider the following arguments:  

   (d)    It is raining. If it is raining then the picnic will be cancelled. Therefore the pic-

nic will be cancelled.  

   (e)    My car is old. If my car is old then my car probably needs repair. Hence my car 

probably needs repair.     

 Obviously, each of these arguments is correct. Moreover, they both have the same 

logical form. And it is easy to see that all arguments of that form are correct. 

 When statements and arguments are more complex it is no longer easy to see 

which statements are necessarily true and which arguments are correct. This is 

where the formal analysis described in this and subsequent chapters becomes 

useful. The diagram below may help clarify the overall strategy used here. 

 5. Logical forms  6.  Reason about forms

and their interpretations 

 7.  Conclusions about

logical forms 

 4. Find logical forms  8. Interpret results 

 1.  English

Statements 

 2.  Reason about meanings, 

facts, and possibilities 

 3.  Conclusion expressed

in English 

 The path 1–2–3 represents the sort of reasoning most people do most of the time. 

Starting with statements expressed in ordinary English, they use informal reasoning to 

come to some conclusion about which statements are necessarily true or whether some 

argument is correct. One use of logical English is to help this process. For example, 

I might want to know whether the statement “76543 is prime or 76543 is not prime.” 

is necessarily true. By noticing that “76543 is prime” and “76543 is not prime” are the 

only possibilities and understanding the meaning of “or” I might conclude that it is not 

possible for the disjunction to be false, hence that it is necessarily true. 

 The path 1–4–5–6–7–8–3 represents the alternative sort of reasoning described 

here in Part III. It is called formal reasoning. Starting as before with statements 

expressed in ordinary English the reasoner tries to find the logical forms of those 

statements. Reasoning about those forms results in conclusions about them. Those 

conclusions are then interpreted back to find conclusions about the original English 
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statements. For example, I might want to know whether the statement “76543 is 

prime or 76543 is not prime.” is true. This time I first find the form of the statement. 

Its form can be expressed as “S ∨ ∼S.” Then I remember that “S ∨ ∼S” is a form 

which is true in all possible interpretations of it. Since the original statement is one 

possible interpretation of the form “S ∨ ∼S” I conclude that the original statement 

is necessarily true. 

 On the face of it, ordinary informal reasoning seems much simpler, easier, and 

faster. And often it is. Unfortunately, while reasoning informally people often get 

confused, make mistakes, and come to incorrect conclusions. 

 Formal reasoning is one way to reduce the confusion and error associated with 

informal reasoning. After studying it people make fewer mistakes, even when 

they do informal reasoning. Carried to extreme, formal reasoning can be auto-

mated so that computers can be used to assist human reasoning. The simplest type 

of formal reasoning involves only truth functional statement forms, as discussed 

in this chapter.  

  11.2 Truth Functional Forms 

 Truth functional forms are terse notations similar to those of logical English. 

However, they do not abbreviate specific statements of English. Instead, they rep-

resent logical forms of statements completely abstracted from any particular 

English statements of which they are the forms. Most of what is known about rules 

and criteria of correct reasoning based only on truth functions involves only the 

forms of statements, not their meanings. Consequently, most of the rules and crite-

ria of correct reasoning based only on truth functions are expressed in terms of truth 

functional forms. Following the next chapter, rules and criteria of correct reasoning 

based on quantifiers will be discussed. 

  Definition 1 .  An  atomic form  is an expression which is a single capital letter 
followed by zero or more lower case letters from near the beginning of the 
alphabet.  

  Example 1 .  P and Qaba are atomic forms. On the other hand, ∀xP(x) ∨ Q, R(c, x), 
and Rcx are not atomic forms. Notice that atomic forms do not have parentheses. 
Notice also that this definition is purely formal (syntactic) and atomic forms do not 
name, refer to, or abbreviate anything else.  

  Definition 2 .  F is a  truth functional form , abbreviated  tff , if and only if

   1.    F is an atomic form  

   2.    F is of the form (∼G) and G is a tff  
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   3.    F is of the form (G ∧ H) and both G and H are tffs  

   4.    F is of the form (G ∨ H) and both G and H are tffs  

   5.    F is of the form (G → H) and both G and H are tffs  

   6.    F is of the form (G ↔ H) and both G and H are tffs     

 As in previous chapters, parentheses will be dropped where confusion is unlikely 

to result.  

  Example 2 .  P, Qab, ∼P, ∼Qab, P ∨ Qab, (P ∨ ∼P), and (P ∨ ∼P) → ∼Qab are all truth 
functional forms by multiple applications of Definition 2.   

  11.3 Interpretations of Truth Functional Forms 

  Definition 3 .  An  interpretation  of a truth functional form is an assignment of a 
truth value (T or F) to each atomic form of that tff. 

 In the literature, interpretations are also called  models  and the approach to logic 

presented here is often called a model theoretic approach. Later the axiomatic 

approach to logic will be discussed briefly.  

  Example 3 .  P ∨ Qab is a tff. Its atomic forms are P and Qab. One interpretation of 
P ∨ Qab results from assigning T to P and T to Qab. Another interpretation results 
from assigning T to P and F to Qab. Another results from assigning F to P and T to 
Qab. Finally, one results from assigning F to P and F to Qab. These are the only 
possible interpretations for this tff. They are described more clearly and briefly in 
the following table, where each row below the components list represents a single 
possible interpretation.

 P  Qab 

 T  T  (first interpretation) 

 T  F  (second interpretation) 

 F  T  (third interpretation) 

 F  F  (fourth interpretation) 

 Note that an interpretation is just another way of describing a row of the lower 

left part of a truth table. If a tff is constructed from N atomic statement forms, then 

there are 2 N  different interpretations of it, corresponding to the 2 N  rows in the lower 

part of its truth table.   
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  11.4 Truth Under an Interpretation 

 Recall that where truth functional connectives are used, the truth value of a com-

pound statement depends only on the truth values of its component parts. 

  Definition 4 .  Let F be a truth functional form and I be an interpretation for F, then 
we define a  valuation function of I , called  V , whose domain is the atomic forms of 
F as well as all the truth functional forms that can be made from those atomic forms 
using truth functional connectives. Specifically, let G be any truth functional form 
built from the atomic forms of F, then V(G) = T just in case

   1.    G is an atomic form and V(G) = T  

   2.    G is of the form (∼H) and V(H) = F  

   3.    G is of the form (H ∧ J) and V(H) = T and V(J) = T  

   4.    G is of the form (H ∨ J) and V(H) = T or V(J) = T  

   5.    G is of the form (H → J) and V(H) = F or V(J) = T  

   6.    G is of the form (H ↔ J) and V(H) = V(J)  

   7.    Otherwise, V(G) = F      

  Example 4 .  If F is P ∨ Qab and I is the first interpretation described in Example 3 
then V 

I
 (P) = T and V 

I
 (Qab) = T, while if I is the second interpretation then V 

I
 (P) 

= T and V 
I
 (Qab) = F, and so on for the other two interpretations.  

  Definition 5 .  Let F be a truth functional form and I be an interpretation for F, then 
if V 

I
 (F) = T then we say that  F is true under interpretation I , and if V 

I
 (F) = F then 

we say that  F is false under interpretation I .  

  Example 5  .

   (a)    Since V 
I
 (P ∨ Qab) = T if and only if V 

I
 (P) = T or V 

I
 (Qab) = T it follows that 

P ∨ Qab is true under I just in case P is true under I or Qab is true under I.  

   (b)    Since V 
I
 (P ∨ Qab) = F if and only if V 

I
 (P) = F and V 

I
 (Qab) = F it follows than 

P ∨ Qab is false under I just in case both P and Qab are false under I.       

  11.5 Truth Functional Truth, Falsity, and Contingency 

  Definition 6 .  A tff is said to be  truth functionally true , abbreviated  TF-true , just in 
case it is true under all of its interpretations, i.e. just in case its truth table has all 
Ts in its final column. TF-true tffs are also called  tautologies .  
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  Example 6 .  Consider the tff P ∨ ∼P. Since it has only one atomic form, it has only 
two interpretations, call them I 

1
  and I 

2
 , where I 

1
 (P) = T and I 

2
 (P) = F, as is shown 

in following truth table. 

 P  P ∨ ∼P 

 T  T 

 F  T 

 Let V 
1
  be the valuation function of I 

1
 . Then from Definition 4 it follows that 

V 
1
 (P) = T, V 

1
 (∼P) = F, and V 

1
 (P ∨ ∼P) = T. Similarly, let V 

2
  be the valuation func-

tion of I 
2
 . Then V 

2
 (P) = F, V 

2
 (∼P) = T, and V 

2
 (P ∨ ∼P) = T. Hence, no matter what 

interpretation, I, is given to P, V 
I
 (P ∨ ∼P) = T.   Correspondingly, the final column of 

the truth table for P ∨ ∼P is all Ts.   Hence P ∨ ∼P is TF-true.  

  Definition 7 .  A tff is said to be  truth functionally false , abbreviated  TF-false , just 
in case it is false under all of its interpretations, i.e. just in case its truth table has 
all Fs in its final column. TF-false tffs are also called  contradictions .  

  Example 7 .  Consider the tff P ∧ ∼P. Since it has only one atomic form, it has only 
two interpretations, call them I 

1
  and I 

2
 , where I 

1
 (P) = T and I 

2
 (P) = F, as is shown 

in following truth table.

 P  P ∧ ∼P 

 T  F 

 F  F 

 Let V 
1
  be the valuation function of I 

1
 . Then from Definition 4 it follows that 

V 
1
 (P) = T, V 

1
 (∼P) = F, and V 

1
 (P ∧ ∼P) = F. Similarly, let V 

2
  be the valuation func-

tion of I 
2
 . Then V 

2
 (P) = F, V 

2
 (∼P) = T, and V 

2
 (P ∧ ∼P) = F. Hence, no matter what 

interpretation, I. is given to P, V 
I
 (P ∧ ∼P) = F.   Correspondingly, the final column of 

the truth table for P ∧ ∼P is all Fs.   Hence P ∧ ∼P is TF-false.  

  Definition 8 .  A tff is said to be a  truth functionally contingent , abbreviated  TF-
contingent , just in case it is neither logically true nor logically false, i.e. it is true in 
some of its interpretations and false in some of its interpretations.  

  Example 8 .  Consider the tff ∼P. Since it has only one atomic form, it has only two 
interpretations, call them I 

1
  and I 

2
 , where I 

1
 (P) = T and I 

2
 (P) = F, as is shown in 

following truth table. 

 P  ∼P 

 T  F 

 F  T 
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 Let V 
1
  be the valuation function of I 

1
 . Then from Definition 4 it follows that 

V 
1
 (P) = T and V 

1
 (∼P) = F. Similarly, let V 

2
  be the valuation function of I 

2
 . Then 

V 
2
 (P) = F and V 

2
 (∼P) = T. Hence, ∼P is true in some of its interpretations and false 

in others. Correspondingly, the final column of the truth table for ∼P has some Ts 

and some Fs. Hence ∼P is TF-contingent. 

 Strictly speaking, a form cannot have a truth value. Only statements have truth 

values. So what do Definitions 6–8 mean? When we say that a tff is TF-true that 

really means that all English statements of that logical form are true, no matter what 

truth values their atomic parts might have. Similarly, to say that a tff is TF-false 

really means that all English statements of that logical form are false no matter 

what truth values their atomic parts might have. Finally, to say that a tff is TF-

 contingent really means that some English statements of that form will be true and 

some will be false, depending on the truth values of their atomic parts.  

  Exercise 1 .  For each of the following tffs, determine whether it is TF-true, TF-
false, or TF-contingent. Hint, find or make a truth table for each. Then examine its 
final column.

   (a)    P ∧ ∼P  

   (b)    P ∨ ∼P  

   (c)    P ↔ P  

   (d)    P ↔ ∼P  

   (e)    P ↔ ∼∼P  

   (f)    P ↔ ∼∼∼P  

   (g)    P → Q ∨ P → ∼Q  

   (h)    P → Q ∨ ∼P → Q  

   (i)    P → Q ∨ Q → P  

   (j)    P → Q ∨ P ∧ ∼Q  

   (k)    ∼(P ∧ Q) ↔ ∼P ∧ ∼Q  

   (l)    ∼(P ∧ Q) ↔ ∼P ∨ ∼Q  

   

 The more general and more important concepts of  logical truth ,  logical falsity , 

and  logical contingency  will be defined in Chap. 13. TF-true forms are among the 

forms that are logically true (logically necessary). TF-false forms are among 

the forms that are logically false (logically impossible). TF-contingent forms may 

be logically true, logically false, or logically contingent.   

  11.6  Using Forms to Find the Logical Status of English 
Statements 

 The first step in using the material above to help determine the logical status of 

an English statement is to express its logical structure by means of a truth func-

tional form. For simple English statements, you may be able to go directly from 
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English to truth functional forms. But for complex statements, logical English 

may be a useful intermediate stage in this process. Below are some examples of 

logical English abbreviations for English statements and corresponding truth 

functional forms. 

  Example 9 .

 Logical English  Truth functional form 

 (a) Happy(Jill)  Hj 

 (b) TallerThan(Max, Joe)  Tmj 

 (c) LessThan(3, 85)  Lab 

 (d) LessThan(3, 5 + 33)  Lcd 

 (e) P(Alice) ∨ ∼Q(Alice, Bill)  Pa ∨ ∼Qab 

 (f) 4 + 2 = 99  Eab 

 (g) 3*5 + 99*2 > 75  Gab 

 (h) ∀xP(x)  P 

 (i) ∃xP(x) ∨ (∼∃xP(x) → R(a, b))  P ∨ (∼P → Rab) 

 (j) ∃xP(x) ∨ ∃x∼P(x)  P ∨ Q 

 (k) ∀x(P(x) → ∼∃yQ(x, y))  P 

 Example 9a, b show the requirement that only single capital letters are used to 

represent predicates and that names are represented by single lower case letters. 

Example 9c shows that numbers are not just copied over into forms, they too are 

represented by a single lower case letter for each number. Example 9d, f, g show 

that definite descriptions such as 5 + 33 are also represented by single letters. 

Example 9e shows that truth functional structure carries over to tffs. Example 9h, 

k show that quantified statements are expressed by single capital letters  followed 

by zero lower case letters. Finally, Example 9i, j show that truth functional struc-

ture which is not within the scope of a quantifier is represented even if some of the 

components are quantified. More will be said in the next chapter about quantifiers 

and logical forms for representing them. 

  Procedure TFL : Let S represent a statement expressed in ordinary English. 

   1.    Express the logical structure of S as a tff, F.  

   2.    Try to determine whether F is TF-true, TF-false, or TF-contingent by

   (a)    Determining whether it is of a form known to be a TF-true, TF-false, or 

TF-contingent  

   (b)    Making a truth table for F and applying Definitions 6–8, thereby adding to 

your stock of known forms  

   (c)    Reasoning involving logical equivalence (see Chap. 14)  

   (d)    Reasoning using logical implication (see Chap. 15)      
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    3.    Draw the appropriate conclusion

   (a)    If F is TF-true then S is necessarily true.  

   (b)    If F is TF-false then S is necessarily false (impossible).  

   (c)    If F is TF-contingent then this test does not establish the truth value of S. 

However, if S has no quantifiers then S is logically contingent in the sense 

defined in the Chap. 13. And if S does have quantifiers then Procedure QL 

in Chap. 13 may help establish the truth value of S.          

  Example 10 .  Suppose S is the statement “Everything is blue or something is not 
blue.” Then logical English for S could be ∀xBlue(x) ∨ ∃x∼Blue(x). But the tff for 
S will be a much less informative form such as P ∨ Q. This form is TF-contingent 
and S contains quantifiers, so this procedure fails even though it is obvious that S is 
necessarily true, a fact that can be established using Procedure QL in Chap. 13.  

  Example 11 .  Suppose S is the statement “Everything is blue and it is not the case 
that everything is blue.” Then the logical English for S could be expressed by 
∀xBlue(x) ∧∼∀xBlue(x)), but the tff for S will be a form such as B ∧ ∼B. Since the 
truth table for this form has all Fs in its final column, it is false in all of its 
interpretations, Hence S is false.  

  Example 12 .  Suppose S is the statement “Today is Monday and it is raining.” Then 
logical English for S could be “Mon ∧ Rain.” Hence the tff for S will be something 
like M ∧ R. Making a truth table for M ∧ R will show that it has one interpretation 
in which it is true and three in which it is false, hence it is TF-contingent, and 
therefore this Procedure TFL does not establish the truth value of S.  

  Example 13 .  Suppose S is the statement “Everything is blue or it is not blue.” Then 
the logical English for S could be expressed by ∀x(Blue(x) ∨ ∼Blue(x)). Hence the 
tff for S will be a much less informative atomic form such as B. Since the truth table 
for B has one T and one F in its final column B is TF-contingent, hence Procedure 
TFL does not establish the truth value of S.  

  Exercise 2 .  Use Procedure TFL to try to determine the truth value of each of the 
English statements below. First find logical English for each statement, then find 
an appropriate tff. Then do the truth table for that tff. Then apply Procedure TFL.

   (a)    Today is Monday and today is not Monday.  

   (b)    Today is Monday or today is not Monday.  

   (c)    If Today is Monday and today is not Monday then the Sun is cold.  

   (d)    If a = 3 and not a = 3 then 5 = 0.  

   (e)    If everything is blue then nothing is blue.  

   (f)    If something is blue then something is blue.  

   (g)    (If today is Monday then the Moon is blue) just in case (if the Moon is not blue 

then today is not Monday).  
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   (h)    (If today is Monday then the Moon is blue) just in case (if today is not Monday 

then the Moon is not blue).  

   (i)    If it is not raining or it is not snowing and, moreover, it is raining then it is not 

snowing.  

   (j)    If it is raining and either it is not snowing or it is not raining then is not snowing.  

   (k)    It is not the case that today is Friday and that today is payday if and only if 

today is not Friday or today is not payday.  

   (l)    It is not the case that today is Friday or that today is payday if and only if today 

is not Friday and today is not payday.       

  11.7 Application to Simplifying Statements and Conditions 

 Conditions in problem specifications and program instructions cannot be said to be 

true or false because they have no truth value. However, consider the condition “P(x) 

or not P(x).” It is obvious that no matter what value is given to x, the resulting state-

ment would be true. It is common to say that such a condition is TF-true or to call it 

a tautology even though this is technically incorrect. Similarly conditions like “P(x) 

and not P(x)” are said to be TF-false or logically impossible. This way of speaking is 

followed in the discussion below. It is particularly appropriate for  program instruc-

tions since when a program is written or compiled the program  variables are place-

holders, i.e. they are logical variables, but when a program is executed the program 

variables are assigned values and hence are names and not logical variables. 

 Knowing that a statement or condition is TF-true or TF-false can allow you to 

simplify it, e.g. in a problem specification or program instruction. You may even be 

able to eliminate the specification or instruction entirely. Below is a list of rules for 

simplifying conditions. 

  Procedure SC: Rules for Simplifying Statements and Conditions  
 When a condition can be simplified, the statements and instructions in which that 

condition appear may also be simplified. 

  Rule SC1 . If a statement or condition is TF-true then it will be true under all 

circumstances. 

 For example, the condition part of the instruction

   If ((x > 0) or not (x > 0)) then Print ‘Hello’ Endif  

  is TF-true, so it will print ‘Hello’ no matter what value x has. Consequently it can 

be simplified to just

   Print ‘Hello’.  

    Similarly, the loop

   While ((x > 0) or not (x > 0))  

  # loop body  

  Endwhile 
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  will repeat forever, no matter what the initial value of x is and no matter how the 

value of x is changed in the loop body. 

  Rule SC2 . If a statement or condition is TF-false then is will be false under all 

circumstances. 

 For example, the condition part of the instruction

   If ((x > 0) and not (x > 0)) then Print ‘Goodbye’ Endif  

 is TF-false, so it will not print “Goodbye” no matter what value x has. Consequently 

it can be simplified by being eliminated altogether. 

 A similar situation arises with conditions in statements. For example,

   If ((x > 0) and not (x > 0)) then y > 5 else z = 7. Endif    

 can be simplified to just

   z = 7.    

  Rule SC3 . If a statement or condition is of the form “C ∨ S” where C is TF-true 

then that whole condition is itself TF-true so it can be eliminated.

   For example, the condition part of the instruction  

  If (((x > 0) or not (x > 0)) or (y > 5)) then Print ‘Hello’ Endif

can be simplified to just  

  Print ‘Hello’.    

 Similarly, the loop

   While (((x > 0) or not (x > 0)) or (y > 5))  

  # loop body  

  Endwhile    

 can be simplified to just

   Loop forever  

  # loop body  

  Endloop    

  Rule SC4 . If a statement or condition is of the form “C ∧ S” where C is TF-

true then that whole condition is true just in case S is true, so C can be 

eliminated.

   For example, the condition part of the instruction  

  If (((x > 0) or not (x > 0)) and (y > 5)) then Print ‘Hello’ Endif    

 can be simplified to just

   If (y > 5) then Print ‘Hello’ Endif    

  Rule SC5 . If a statement or condition is of the form “C ∨ S” where C is TF-false 

then that whole condition is true just in case S is true, so C can be eliminated. 
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 For example,

   If (((x > 0) and not (x > 0)) or (y > 5)) then z = 7 Endif.    

 can be simplified to

   If (y > 5) then z = 7 Endif.    

  Rule SC6 . If a statement or condition is of the form “C ∧ S” where C is TF-false 

then that whole condition is itself TF-false, so S can be eliminated. 

 For example,

   If (((x > 0) and not (x > 0)) and (y > 5)) then Print Goodbye Endif 

  can be simplified by eliminating it entirely. 

 These examples are simple enough that they are easy to see and to avoid. In real 

life conditions and instructions can be much more complex. In addition the parts of 

TF-true and TF-false conditions can be spread out over more than one part of an 

instruction, as in the example below.

   If (x = 0) then

      While (not (x = 0)

         Print ‘Hello’  

        x ← x + 1     

     Endwhile  

     Print ‘Goodbye’     

  Endif    

 Notice that “x = 0” in the first line contradicts “not (x = 0)” in the second line 

and that there is nothing between these lines which can change the value of x. The 

result is that the body of the while loop will never be executed. The whole instruc-

tion can be simplified to

   If (x = 0) then Print “Goodbye” Endif    

  Exercise 3 .  Use your knowledge of truth tables, TF-truth, and TF-falsity to simplify 
the following instructions. Note that in some cases there may be no way to simplify 
an instruction.

   (a)    If (x = 0) then

   If not (x = 0) then

   Print ‘Hello’     

  Endif  

  Print ‘Goodbye’  

  Endif     

   (b)    If (x = 0) then

   Print ‘Goodbye’  

  If not (x = 0) then

   Print (‘Hello’)     

  Endif  
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  Endif     

   (c)    While (x = 0)

   While not (x = 0)

   x ← x – 1  

  Endwhile     

  Endwhile     

   (d)    If ((x = 0) or not (x = 0)) then

   x ← x – 1  

  Endif     

   (e)    If (x > y and not y < 0 or not x > y and y < 0 or not y < 0 or x > y) then Print 

‘This is a mess’ Endif  

   (f)    If (not x > y or y < 0 or x > y and not y < 0 or not y < 0 or x > y) then Print 

‘This is a mess’ Endif          



 This chapter describes decision tables, also called decision-action tables. While 

they resemble truth tables in some respects, they are not truth tables. They can be 

used to plan and to document program designs. After studying this material you 

should be able to

   1.    Translate program designs expressed in English into equivalent program designs 

expressed as decision tables and vice versa.  

   2.    Simplify decision tables.  

   3.    Analyze program designs expressed as decision tables for consistency, com-

pleteness, and redundancy.      

  Outline 

  12.1 The general form of decision tables  

  12.2 Limited entry decision tables 

   12.2.1 The basic form  

   12.2.2 Simplifying tables with “don’t care” condition entries  

  12.3 Extended entry decision tables  

  12.4 Decision tables and other control structures  

  12.5 Consistency, completeness, and redundancy of decision tables      

  12.1 The General Form of Decision Tables  

  Decision tables  (also know as decision logic tables, logic tables, and condition 

action tables) are often used to represent complex “If then else” or “case” control 

structure. They resemble truth tables in several respects. The general form of a 

decision table is:

 Condition stub  Condition entries 

 Action stub  Action entries 
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  12.2 Limited Entry Decision Tables  

   12.2.1 The Basic Form  

 Decision tables which have only Ts and Fs as condition entries and Ys or Ns as 

their action entries are called  limited entry decision tables . 

  Example 1a .  The specification If x is greater than 0 then assign y the value 

“positive” would be represented by the following decision table

 x > o  T  F 

 y ← ‘positive’  Y  N 

  Example 1b .  The specification If x is greater than 0 then assign y the value “positive” 

otherwise assign y the value “negative” would be represented by the following 

decision table.

 x > 0  T  F

 y ← “positive”  Y  N

 y ← “negative”  N  Y

 The following example describes a more complex set of cases and introduces 

labels for rows and columns. The row labels C1, C2, and C3 refer to conditions. 

The row labels A1, A2, etc. refer to actions. The columns are labeled R1, R2, etc. 

because the information in each of those columns is intended to be interpreted as a 

rule for conditional action.  

  Example 2a .  Everyone gets a printed sales flyer except those who are not rich, not 

paid up, and not high volume. Rich customers get a long catalog unless they are not 

paid up and not high volume. Poor customers get a long catalog just in case they are 

high volume. The only people who get nasty bills are those who are poor, not paid 

up, and not high volume. Others get a polite bill if and only if they are not paid up.

 R1  R2  R3  R4  R5  R6  R7  R8 

  C1   Customer rich  T  T  T  T  F  F  F  F 

  C2   Customer paid up  T  T  F  F  T  T  F  F 

  C3   High volume  T  F  T  F  T  F  T  F 

  A1   Print polite bill  N  N  Y  Y  N  N  Y  N 

  A2   Print nasty bill  N  N  N  N  N  N  N  Y 

  A3   Print long catalog  Y  Y  Y  N  Y  N  Y  N 

  A4   Print sales flyer  Y  Y  Y  Y  Y  Y  Y  N 
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 If, as in Example 2a, a rule calls for more than one action then the convention is 

that the actions are to be executed one at a time from top to bottom, unless some 

other order is specified. Later more will be said about this and other control structure 

issues. For the present we will just follow the convention. 

 The process of constructing decision tables can be very helpful because it forces peo-

ple to consider all possible cases and to be clear about what is supposed to happen in each 

different circumstance. After they are constructed, decision tables can help communicate 

important features of program design, even to people who know little or nothing about 

programming. A decision table can also be used to suggest test cases for programs that 

are supposed to implement the design expressed in the table. And after a program is 

written, a corresponding decision table can be used as part of its design documentation. 

  Steps for constructing a decision table .

   Step 1.    Find the simplest conditions in the program specifications.  

   Step 2.    Find the simplest actions mentioned in the program specifications.  

   Step 3.     Make a four part table with one row for column titles and one row for each 

simple condition in the upper half. The left half of the table should have a col-

umn for condition and action labels and a single wide column for the condition 

and action stubs (short descriptions). The right half of the table should have two 

to the nth power columns, where n is the number of simple  conditions used.  

   Step 4.    Fill in the condition and action entries using the program specifications.      

  Exercise 1 .  Make a decision table for the following specifications for calculating 

weekly pay for salespeople. 

 Everyone gets a base salary no matter what. Trainees get an additional $100 per week. 

Experienced salespeople in established territories are expected to sell at least $2,000 per 

week. If they do not then they get only their base salary. Anyone who sells more than 

$2,000 in a week gets a 10% commission on the amount over $2,000. Anyone selling in 

a new territory gets an additional 15% commission on the amount over $2,000.   

   12.2.2 Simplifying Tables with “Don’t Care  ”  Condition Entries  

 In the course of using decision tables people have invented a variety of ways to express 

them differently or make them easier to use. For example, when decision tables are 

implemented in programs, each rule can be represented by a separate conditional instruc-

tion. Rules 1 and 2 in Example 2a above would probably end up something like this:

   If (Cust.is.rich and Cust.is.paidup and Cust.is.hivol) then

   print.long.cat  

  print.sale.flyer     

  endif  

  If (Cust.is.rich and Cust.is.paidup and not Cust.is.hivol) then

   print.long.cat  

  print.sale.flyer     

  endif    
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 With eight rules we would get eight such instructions. The decision table may 

be very clear but the resulting program is unnecessarily complex and difficult to 

read. For example, note that Rules 1 and 2 both result in the same actions whether 

or not the customer is high volume. Consequently we could accomplish the same 

result with a single instruction:

   If (Cust.is.rich and Cust.is.paidup) then

   print.long.cat  

  print.sale.flyer     

  endif    

 The resulting program is significantly shorter and clearer. To represent this kind 

of simplification decision tables often use “-” to indicate “don’t care” situations, as 

in Example 2b below. 

  Example 2b  

 R12  R3  R4  R5  R6  R7  R8 

  C1   Customer rich  T  T  T  F  F  F  F 

  C2   Customer paid up  T  F  F  T  T  F  F 

  C3   High volume  –  T  F  T  F  T  F 

  A1   Print polite bill  N  Y  Y  N  N  Y  N 

  A2   Print nasty bill  N  N  N  N  N  N  Y 

  A3   Print long catalog  Y  Y  N  Y  N  Y  N 

  A4   Print sales flyer  Y  Y  Y  Y  Y  Y  N 

  Exercise 2 .  Try to simplify the Example 2b decision table further. 

 Another way of expressing decision tables is to replace “Y” and “N” in the action 

entries by “X” and “ ” (blank). People who use this notation often also use “Y” and “N” 

where “T” and “F” were used in Example 2. With these changes Example 2b becomes:  

  Example 2c  

 R12  R3  R4  R5  R6  R7  R8 

  C1   Customer rich  Y  Y  Y  N  N  N  N 

  C2   Customer paid up  Y  N  N  Y  Y  N  N 

  C3   High volume  –  Y  N  Y  N  Y  N 

  A1   Print polite bill  X  X  X 

  A2   Print nasty bill  X 

  A3   Print long catalog  X  X  X  X 

  A4   Print sales flyer  X  X  X  X  X  X 
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  Exercise 3 .  Try to simplify the result of exercise 2.  

  Exercise 4 .  All the parts of this exercise refer to the following set of 

specifications. They all pertain to applicants for loans at a bank or loan company. 

 Specifications: An old applicant is one who has borrowed from us before. If an 

applicant does not qualify for a loan then write a polite rejection letter. Since 

we already have an applicant data record (name, address, etc.) for each qualifying 

old applicant we only need to update their record in the applicant file. For a quali-

fying new applicant we need to create a new applicant record in the applicant file. 

We do not create applicant records for non qualifying new applicants. For all appli-

cants who qualify we also type new loan papers. Then we create a record describing 

that loan on the pending loan file.

   (a)    List the basic conditions used in the specifications.  

   (b)    list the basic actions used in the specifications.  

   (c)    Draw an appropriate complete limited entry decision table (like Example 2a). 

Fill in the condition stub, the condition entries, the action stub, and the action 

entries.  

   (d)    Try to simplify your table. If it cannot be simplified then say why it cannot be 

simplified. If it can be simplified, use don’t care (-) condition entries to repre-

sent simplifications.        

  12.3 Extended Entry Decision Tables  

 Another way in which decision tables can be made easier to use is to allow more 

than two condition alternatives (true or false). Sometimes we want to represent 

conditions that naturally divide things in more than two ways; e.g. X < 0, X = 0, 

or X > 0 or record status code = “FR,” “SO,” “JR,” or “SR.” When the condition 

entries are other than “T” or “F” they are called  extended condition entries . The 

number of different possible cases associated with a condition is called its  modu-
lus . When the modulus of a condition is greater than two it is sometimes easier 

to indicate the condition status in the condition entry itself, as in the following 

condition stub.

 Modulus 

 X value  > 0  > 0  = 0  = 0  < 0  < 0  3 

 X an integer  T  F  T  F  T  F  2 

 With n conditions, each true or false (modulus 2), the number of columns (rules) 

needed for a complete decision table is 2 to the nth power. More generally, the 

number of columns needed for a complete decision table is the product of the 

moduli of the conditions. In the example above the number of columns needed was 

3 times 2, i.e. 6. 
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  Exercise 5 .  Determine the number of Rules (columns) needed for a complete 

decision table for processing records where the transaction type can be “add,” 

“change,” or “delete,” and the transaction code can be “FR,” “SO,” “JR,” “SR,” or 

“SP.” Assume that each combination of transaction type and code requires different 

processing. What are the moduli of the two conditions? 

 Decision tables are also sometimes written with extended action entries which 

describe what to do rather than just using “X” and ““ (or “Y” and “N”). For example, 

the last four columns of the bottom part of Example 2a could be rewritten:

 R1..R4  R5  R6  R7  R8 

 Condition stub  …  Condition  Entries  Condition  Entries 

 Print bill type  …  None  None  Polite  Nasty 

 Print ad type  …  Both  Flyer  Both  None 

  Exercise 6 .  Take your result from Exercise 2 and rewrite it with extended action 

entries as above.  

  Exercise 7a .  Construct a pair of decision tables for calculating insurance origination 

fees according to the following specifications. Make your tables compact by using 

“don’t care” condition entries, extended condition entries, and extended action 

entries as appropriate. Have one table for each kind of insurance. 

 At one time the consumer loan laws of one state allowed lenders to charge 

insurance origination fees for the life insurance and for the accident and health 

insurance they could offer borrowers. Borrowers are not required to buy either kind 

of insurance. For each of the two kinds of insurance the origination fee is: $0 if the 

amount of indebtedness is less than $250, $1 if the amount is between $250 and 

$500, and $2 if the amount is greater than $500. Borrowers occasionally renew their 

loans, i.e. borrow more before the original loan is completely repaid. In that case 

they can again choose none, one, or both kinds of insurance and another loan origi-

nation fee can be charged for each kind of insurance except that no more than two 

origination fees for each type of insurance can be charged in any one year period. 

Your decision tables should assign the appropriate fee for each of the two kinds of 

insurance, i.e. your action entries should specify what insurance origination fee to 

assign under various circumstances for each of the two kinds of insurance.  

  Exercise 7b .  What is the advantage of doing two separate tables over one combined 

table? Hint: How big would a combined table be?  

  Exercise 8 .  Construct a decision table to express the following specifications. Make 

your tables compact by using “don’t care” condition entries, extended condition 

entries, and extended action entries as appropriate. The subroutine is to update a 

single master inventory file record using a single transaction record from a transaction 

file. The subroutine is inside a loop which goes through both files, but this part only 
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deals with a single record from each file. Transactions are of type “Add,” “Change,” 

or “Delete.” If the transaction type is “Add” and master.key is not equal transaction.

key then a new master record is added to the master file. If the transaction type is 

“Add” and master.key = transaction.key then an error message is printed and no other 

action is taken. If the transaction type is “Change” or “Delete” and master.key = 

transaction.key then the master record is changed or deleted, but if the two keys are 

not equal then an error message is printed and no other action is taken.   

  12.4 Decision Tables and Other Control Structures  

 As was mentioned earlier, if a rule in a decision table calls for more than one action 

then by convention the actions are to be executed in order from top to bottom. 

If some other order is intended this can be indicated by numbering the entries in the 

action entry part of the table. 

 Various exit actions can be included among the action entries of a decision table. 

Among them are “call,” “return,” “go to,” “repeat,” and “stop.” “Call” is used to 

cause a temporary exit to another decision table (or other kind of program specifica-

tion) with the assumption that the called decision table will end with a “return.” 

“Return” is implicitly the last action of every rule, unless some other exit action is 

explicitly given. “Goto” (followed by a table name) is sometimes used, but is not 

consistent with fashionably structured programming. It should be avoided unless 

you have a very good reason to use it. “Repeat” indicates that the whole table is to 

be executed again, from the top. It allows decision tables to represent loops. Finally, 

“stop” indicates execution is to cease at that point. 

  Example 3 .  This example shows a decision table representing a loop. The specifications 

it is supposed to represent are to be implemented in a subroutine that begins by opening 

a file and assigning the variable “Answer” the value “none”. Then it repeats the 

following actions until Answer = “Y” or there are no more records to read.

 R1  R2  R3  R4 

 File closed  T  F  F  F 

 More records  –  F  T  T 

 Answer = “Y”  –  –  T  F 

 Open file  Y  N  N  N 

 Answer ← “none”  Y  N  N  N 

 Read next record  N  N  N  Y 

 Get value for answer  N  N  N  Y 

 Repeat  Y  N  N  Y 

 Return  N  Y  Y  N 
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 Rule 1 represents the fact that at the beginning of the subroutine the file is 

supposed to be closed and the first thing to be done is to open the file and initialize 

“Answer” to “none”. Notice that if the file is closed then we don’t care about the 

other conditions. Rule 2 is used in case the file is open and there are no more 

records to read. In this case we do not care what the value of Answer is, we just 

want to return to the calling program. If the file is open and there are more records 

to read and Answer is not already assigned “Y” then R4 describes the repeating 

loop body actions, i.e. a record is read, a new value of Answer is obtained, and the 

table is repeated. Note that it is the table that is repeated, not just the loop body. 

When Answer = “Y” Rule 3 is executed to cause return to the calling program. 

 Below is some pseudocode which might represent this table.

    If (file is closed) then

   open file  

  Answer ← “none”     

  else

   while (there are more records and not Answer = “Y”) do  

  read next record  

  get value for Answer  

  endwhile     

  endif  

  return     

  Exercise 9 .  Make a decision table for the following specifications. The subroutine 

is to delete a record from a sequential access file. It is to do this by opening the 

master file, creating a new master file, and copying records from the master file to 

the new master file until it has read the record to be deleted. It does not copy that 

record to the new master file. Then it copies the remaining records from the master 

file to the new master file, closes both files, and returns to the calling program.   It is 

assumed that each record has a KEY field and that the subroutine is given the key 

value of the record to be deleted.   

  12.5  Consistency, Completeness, and Redundancy 
of Decision Tables  

 When decision tables are used to express program specifications they can help 

detect defects such as functional incompleteness, inconsistency, and redundancy 

in those specifications. This is especially true if the original specifications are 

verbal or are written in English. Unfortunately, if decision tables are used incor-

rectly they can introduce those same defects. In any case decision tables should 

always be checked for completeness, consistency, and redundancy as described 

below. 

 A decision table is complete just in case it has a rule for each possible combination 

of condition values for its conditions. A complete decision table tells what to do in 
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every possible circumstance. It should be noted, however, that “Do nothing” is a 

perfectly acceptable action, since in many cases a given part of a program is not sup-

posed to do anything. Of course, doing nothing must be distinguished from forgetting 

to specify an action for a particular set of conditions. In practice you may have to ask 

the specifier about particular situations where an explicit specification is missing. 

 Two rules in a decision table are inconsistent iff they have the same condition 

values and different actions. Inconsistent rules tell you to do different things under 

the same circumstances. If any pair of rules in a decision table is inconsistent then 

the whole table is also said to be inconsistent. Note that carefully constructed deci-

sion tables would not be inconsistent because by definition they have only one rule 

for each combination of conditions. In practice, however, inconsistencies can creep 

in when specifications get complicated or people get confused. 

 A rule in a decision table is said to be redundant iff it has the same condition 

values and specifies the same actions as some other rule in the table. It is especially 

easy to introduce redundancy or even inconsistency by using “don’t care” condition 

values too freely while simplifying decision tables. 

  Exercise 10 .  Imagine that you have been given the following English description of a 

subroutine that is to implement the RECCHECK problem specifications given 

below. Each execution of the routine is to check data from one student record. Input 

for RECCHECK is a single student record with many fields. Among those fields 

are the TIME field, the CODE field, and the AGE field. The initial output 

specifications described below. 

 If the TIME field is “day” and the AGE field has a value less than 24 then if the 

CODE field is “trad” then the subroutine should return “OK.” Under these same 

conditions if the CODE field is not “trad” then the subroutine should return “NG.” If 

the time field is not “day” then the subroutine should return “NG” unless the AGE 

field has a value greater than or equal to 24, in which case it should return “OK.”

   (a)    Make a limited entry decision table from the specifications above. “Limited 

entry” means you use Ts and Fs as the only condition entries and Ys and Ns as 

the only action entries. The fact that this is a subroutine means that the last 

action for each rule should be to return to the calling program. For this exercise, 

explicitly express the return action, e.g. RETURN (“OK”).  

   (b)    Use your decision table to determine what action is specified for a record with 

TIME = “night,” AGE = 17, and CODE = “trad.”  

   (c)    For what combinations of conditions does your decision table specify no 

action, i.e. for what conditions are these specifications incomplete?  

   (d)    In attempting to improve the specifications for RECCHECK you ask the speci-

fier for additional information. The specifier gives you the following additional 

specifications.     

 Additional specifications for RECCHECK:

   1.    If AGE is less than 24 and TIME is not “day” and CODE is not “trad” then the 

subroutine should return “OK.”  
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   2.    If CODE is “trad” and AGE is less than 24 and TIME is “day” then return “OK.”  

   3.    If TIME is not “day” and CODE is “trad” and AGE is not less than 24 then 

return “OK.”     

 For each of the three new specifications determine whether it is redundant, 

inconsistent with the original specifications, or is a nonredundant addition to those 

specifications. In each case explain your answer.      



        Chapter 13   
 Quantified Forms       

  This chapter extends the concepts of Chap. 11 to include quantifiers and variables. 

After studying this material you should be able to:

   1.     Describe how truth functional logic differs from quantificational logic.  

   2.     Describe and use well formed forms (wffs).  

   3.     Describe and give examples of interpretations for wffs.  

   4.      Describe the conditions under which wffs are true or false for a given 

interpretation.  

   5.      Describe the conditions under which wffs are said to be logically true, logically 

contingent, or logically false.  

   6.      Use knowledge of the logical status of wffs to determine the logical status of 

statements expressed in ordinary English.        
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  13.1  How Truth Functional Logic Differs 
from Quantificational Logic  

 The part of logic described in this chapter is called quantificational logic or predicate 

logic. It is the core of modern logic. When the term “logic” is used, without quali-

fication, quantificational logic is usually what is meant. Consequently, properties 
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140 13 Quantified Forms        

and relations you might expect to be called “quantificational” are usually just called 

“logical.” For example, quantificational truth, quantificational consistency, etc. are 

called logical truth, logical consistency and so on. 

 Truth tables can be used to determine whether a tff is TF-true, TF-false, or TF-

contingent. The procedure of making a truth table, if properly done, is guaranteed 

to come to an end after a finite number of steps and is guaranteed to determine 

which category a statement belongs to. Unfortunately there is no such step by step 

“decision procedure” for classification of forms involving quantifiers.  

  13.2 Well Formed Forms  

  Definition 1 .  A  predicate letter  is any uppercase letter, with or without subscripts, 
used as part of a form as defined below, e.g. P, P 

0
 , P 

1
 ,…   An  identifier letter  is any 

lower case letter near the beginning of the alphabet, with or without subscripts, used 
as part of a form as defined below, e.g. a, a 

0
 , a 

1
 , … A  logical variable  is any lower 

case letter near the end of the alphabet, with or without subscripts, used as part of 
a form as defined below, e.g. w, w 

0
 , w 

1
 ,… 

 Predicate letters are the formal counterparts of predicates in English. Identifier 

letters are the formal counterparts of names and definite descriptions. Logical vari-

ables are formal place holders.  

  Definition 2 .  A predicate letter followed by zero identifier letters is called a  state-
ment letter . A predicate letter followed by one or more identifier letters, e.g. Pa, 
Pab, Q 

7
 cac, …is called an  atomic predicate form . If an atomic predicate form has 

N identifier letters then in that context the predicate letter is said to be an  N-place 
predicate letter . 

 Atomic predicate forms are just like the atomic forms of Chapter 11 except that 

capital letters followed by zero identifier letters are now called statement letters.  

  Definition 3 .  A  universal quantifier  is the symbol ∀ followed by a logical varia-
ble. An  existential quantifier  is the symbol ∃ followed by a logical variable, e.g. 
∀x, ∀y, ∀z 

3
 ,… ∃x, ∃y, ∃z 

3
 , … 

 Well formed forms, defined below, are intended to represent the logical forms of 

statements which may involve quantifiers. The expressions called “well formed 

forms” here are traditionally called “well formed formulas.”  

  Definition 4 .  F is a well formed form (wff) if and only if

   1.    F is a statement letter,  

   2.    F is an atomic predicate form,  

   3.    F is of the form (~G) and G is a wff,  

   4.    F is of the form (G  H) and both G and H are wffs,  

   5.    F is of the form (G  H) and both G and H are wffs,  
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   6.    F is of the form (G → H) and both G and H are wffs,  

   7.    F if of the form (G ↔ H) and both G and H are wffs, or  

   8.    F is the result of modifying a wff, H, by

   (a)    replacing all instances of an identifier letter in H, by a variable, v, not 

already in H,  

   (b)    prefixing the resulting expression by ∀v or ∃v, and  

   (c)    except when H is an atomic predicate form, enclosing the expression to the 

right of the quantifier in parentheses.      

   9.    Finally, in case clause 8 is used to construct F, the part of F to the right of the 

quantifier is called the  scope of the quantifier  and each instance of v in it is said 

to be  quantified  and to be  bound by  that quantifier.     

 Wffs are not logical English. They are not abbreviations for statements, rather, 

they are placeholders for statements. They represent logical forms of statements 

stripped of all meaning. For example, “∀xPxa” represents the logical form of state-

ments such as “All things are taller than John.” and “∀xPxx” represents the logical 

form of statements such as “Everything is equal to itself.”  

  Example 1 .  Every statement letter and every atomic predicate form is a wff. Below 
are some more wffs.

 (a) ∀xPxa  Pxa is the scope of ∀x and the x in Pxa is bound by ∀x. 

 (b) ∀xPxx  Pxx is the scope of ∀x and both instances of x are 

bound by ∀x. 

 (c) ∃zQzza  Qzza is the scope of ∃z and both instances of z are 

bound by ∃z. 

 (d) ∀xPx  ∃xPx  The scope of ∀x is the first Px and its x is bound by ∀x. 

The scope of ∃x is the second Px and its x is bound by ∃x. 

 (e) ∀x(Px  ∃yPy)  The scope of ∀x is (Px  ∃yPy). The scope of ∃y is Py. The 

x in Px is bound by ∀x and the y in Py is bound by ∃y. 

 (f) S → ∀x(∃yRxy)  The scope of ∀x is (∃yRxy). The scope of ∃y is Rxy. In 

Rxy, x is bound by ∀x and y is bound by ∃y. 

 (g) ∀z(Pz → Rzb  Q)  The scope of ∀z is (Pz → Rzb  Q). Both instances of z are 

bound by ∀z. 

 (h) ∀x(Px ↔ ∃yQxy)  The scope of ∀x is (Px ↔ ∃yQxy) and both instances of 

x are bound by ∀x. The scope of ∃y is Qxy and the 

instance of y is bound by ∃y. 

  Example 2 .  On the other hand, the following are not wffs.

 (a) Pa→  because → requires a wff on each side. 

 (b) ∀x(Px → ∃xPx)  because x is quantified in (P(x) → ∃xP(x)), so ∀x cannot be 

prefixed to it. 

 (c) ∀x(∃xPx)  because x is already quantified in ∃xPx. 

 (d) ∃yPx  because y could not have been the result of substituting y 

for an identifier letter in P…. 
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  Exercise 1 .  Identify the scope of each quantifier and tell which instances of which 
variables are bound by what quantifiers.

   (a)    ∀xPx ∧ ∃yPy  

   (b)    S → ∀x∃yRxy  

   (c)    ∀z(Pz → Rzb)  

   (d)    ∀x(Px ↔ ∃yQxy)  

   (e)    ∀x(Pxy ↔ ∃y(Qxy ∨ Rx))  

   (f)    Pb → ∃x∀y(Qxyx ∨ ∀zQzyx)       

  13.3 Interpretations of Wffs  

 Here the concept of an interpretation is extended from interpretations for truth 

functional forms to interpretations for wffs. This is done by defining an interpreta-

tion of F to consist of a set, D, called the domain of the interpretation and a valua-

tion function, V. V associates an element of D with each identifier letter of F and V 

associates an N-place relation on D for each N-place predicate letter of F. Different 

interpretations of a wff provide a basis for finding examples of meaningful state-

ments that have the logical form represented by the wff. 

  Definition 5 .  If F is a wff then the set of statement letters, identifier letters and 
predicate letters in F is called the  vocabulary of F .  

  Definition 6 .   An interpretation, I, of a wff, F , is a pair <D, V> where D is a non-
empty set and V is a function whose domain is the vocabulary of F and where:

   1.    If L is a statement letter in F then V(L) = T or V(L) = F,  

   2.    If b is an identifier letter of F then V(b) ∈ D, and  

   3.    If P is an N-place predicate letter of F then V(P) is a set of N-tuples of elements 

of D, i.e. an N-place relation on D.     

 Notice that V is not defined for the variables of a wff. In extensions of interpreta-

tions, as defined later, V is extended so it is defined for variables also. 

 If b is an identifier letter in the vocabulary of F then equations such as “V(b) = 22” 

will often be written “b is interpreted as 22” or “b is assigned to 22.” And if P is a 

predicate letter in the vocabulary of F then equations such as “V(P) = {x | x a prime 

number}” will often be written “P is interpreted as the property of being a prime 

number” or “P is assigned to the property of being a prime number.”  

  Example 3 .  Suppose F is the wff “∀x(Gxb → ∼Gbx).” Then b is the only identifier 
letter of F, G is its only predicate letter, and {b, G} is the vocabulary of F. A few 
interpretations of F are described below.

   (a)    One interpretation of F is <D, V> where

   D = {1, 2, 3}, V(b) = 2, and V(G) = {<1, 2>, <2, 3>}.     
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   (b)    Another interpretation of F is <D, V> where

    D = {Mercury, Venus, Earth}, V(b) = Mercury, and D(G) = {<Earth, 

Mercury>, <Mercury, Venus>, <Venus, Earth>}.     

   (c)    Another interpretation of F is <D, V> where

    D = the set of all rational numbers, V(b) = 3/5, and V(G) = the less than 

relation on rational numbers.     

   (d)    Another interpretation of F is <D, V> where

    D = the set of all programming languages, V(b) = Ruby, and V(G) =  the 

IsOlderThan relation on programming languages.        

 In general, the domain of an interpretation can be any nonempty set, the values associ-

ated with the identifier letters can be any elements of that set, and the relations associ-

ated with N-place predicates can be any set of N-tuples of elements of the domain.  

  Example 4 .  Suppose F is the wff “P ∧ ∃yBay ∨ Rabc.” Then P is a statement letter 
of F, a, b, and c are the identifier letters, B is a two-place predicate letter, R is a 
three-place predicate letter, and {P, a, b, c, B, R} is the vocabulary of F.

   (a)    One interpretation of F is

   D = the set of all positive integers, V(a) = 2, V(b) = 3, V(c) = 5, V(P) = T, 

V(B) = the LessThan relation on D, and V(R) = the IsTheSumOf relation on D, 

i.e. Rabc if an only if a is the sum of b and c.     

   (b)     Another interpretation of F is

   D = The set of cities in the United States, V(a) = Chicago, V(b) = Kalamazoo, 

V(c) = Detroit, V(P) = F, V(B) = the WestOf relation on D, and V(R) = the 

IsBetween relation on D, i.e. Rabc if and only if a is between b and c.        

 Recall that the number of interpretations of a truth functional form composed of 

N atomic forms is 2 N . With well formed forms, however, because the number of sets 

is infinite, the number of interpretations of any wff is infinite. This is one of the 

reasons that quantificational logic is harder than truth functional logic.   

  13.4 Truth of Wffs in an Interpretation  

  Definition 7 .  Let I = <D, V> be an interpretation of a wff F and v be a variable in 
F. Then  an extension of I to v , denoted I 

v
  = <D, V 

v
 >, is an interpretation identical 

to I except that V 
v
  = V ∪ {<v, d>} for some element d of D. 

 Note that extending I to I 
v
  amounts to treating the variable v as if it were an identifier 

letter with interpretation d. Consequently we can write “In I 
v
  v is interpreted as d.”  

  Example 5 .  Let F be (Pa ∨ Qa) ∧ ∀xRx ∧ ∃yBcy. Then a and c are the identifier 
letters of F and B, P, Q, and R are the predicate letters of F. One interpretation, I, 
of F is described below.
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   D = {Jack, Jill, Dick, Jane}  

  V(a) = Jane  

  V(c) = Jill  

  V(B) = {<Jack, Jill>, <Jill, Dick>}  

  V(P) = {Jill, Dick}  

  V(Q) = {Jack, Jill, Jane}  

  V(R) = {Jack, Jill}    

 Since there are four elements of D there are four ways to extend I to x. One exten-

sion of I to x would result from extending V to V 
x
  so that V 

x
 (x) = Jack. Another 

extension of I to x would result from extending V so that V 
x
 (x) = Jill. A third exten-

sion would make V 
x
 (x) = Dick, and the fourth would make V 

x
 (x) = Jane. 

 Each of these extensions could be extended to y. One extension of I 
x
  to y would result 

from extending V 
x
  to V 

xy
  so that V 

xy
 (x) = Jack and V 

xy
 (y) = Jack. Another extension of 

I 
x
  to y would result from extending V 

x
  to V 

xy
  so that V 

xy
 (x) = Jack and V 

xy
 (y) = Jill. 

 All together there are four different ways to extend I to x and for each of these 

there are four different ways to extend I 
x
  to y. Hence there are 16 different ways to 

extend I to x and y, one for each different way of assigning an element of D to x 

and a (not necessarily different) element of D to y. 

 An interpretation of a wff represents one way to give meaning to it. A wff is said 

to be true in an interpretation if it is true when its vocabulary is understood to have 

the meanings given them by I.  

  Definition 8 .  A wff, F, is true in an interpretation, I = <D, V>, of F if and only if

    1.    F is a statement letter and V(F) = T,  

    2.    F is an atomic predicate form, Pi 
1
 i 
2
 .i 

N
 , and <V(i 

1
 ), V(i 

2
 ), …V(i 

N
 )> is an element 

of the N place relation on D that I associates with P,  

    3.    F is of the form (~G) and G is false in I,  

    4.    F is of the form (G ∧ H) and both G and H are true in I,  

    5.    F is of the form (G ∨ H) and G is true in I or H is true in I,  

    6.    F is of the form (G → H) and G is false in I or H is true in I,  

    7.    F is of the form (G ↔ H) and G and H have the same truth value in I,  

    8.    F is of the form ∃vH(v) and H(v) is true in some extension of I to v, or  

    9.    F is of the form ∀vH(v) where H(v) is true in every extension of I to v.  

   10.    Finally,  F is false in I  if and only if it is not true in I.     

 When clause 8 or clause 9 if this definition is applied, the variable v is said to 

be  instantiated  in the corresponding extended interpretation. The instantiated 

 variable, v, functions like an identifier letter in H(v). The extended interpretation, 

I 
v
 , functions exactly like an ordinary interpretation of H(v). 

 Each time a clause of Definition 8 is applied, the forms that result are simpler, 

either by involving one less truth functional connective or by involving one less 

quantifier. However, repeated application of Definition 8 will require considering 

more and more forms and more and more extended interpretations.  
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  Example 6 .  Using the interpretation, I, described in Example 5 above and applying 
Definition 8 we have that (with parentheses restored) 

 F = ((Pa ∨ Qa) ∧ ∀xRx) ∧ ∃yBcy.

    (a)     In order for F to be true in I both ((Pa ∨ Qa) ∧ ∀xRx) and ∃yBcy must be true 

in I.  

   (b)     In order for (Pa ∨ Qa) ∧ ∀xRx to be true in I, both (Pa ∨ Qa) and ∀xRx must 

be true in I.  

   (c)    In order for Pa ∨ Qa to be true in I, either Pa or Qa must be true in I.  

   (d)     But Pa is false in I because V(a) = Jane, V(P) = {Jack, Jill}, and hence Jane is 

not an element of V(P).  

    (e)     On the other hand, Qa is true in I since V(a) = Jane, V(Q) = {Jack, Jill Jane}, 

and therefore Jane is an element of V(Q).  

    (f)     So Pa ∨ Qa is true in I.  

   (g)     On the other hand, ∀xRx is false in I because if V is extended so V 
x
 (x) = Dick 

we have an extension I 
x
  of I to x in which V 

x
 (x) ∼∈V 

x
 (R).  

   (h)    Hence the original wff, F, is false in I  

   (i)     For the sake of completeness, note that ∃yBcy is true in I. This is because 

V(c) = Jack and <Jack, Jill> ∈ V(B). So if I is extended so that y is interpreted 

as Jill, then we have an extension of I to I 
y
  in which <Jack, V 

y
 (y)> ∈ V(B), i.e. 

in which Bcy is true.     

 Notice that once you have an interpretation for a set, F, of wffs, you also have 

an interpretation for any other wffs whose vocabulary is included in the vocabulary 

of F. For example, ∃xRx is true in I because there is an extension of I to x in which 

Rx is true, e.g. any extension in which V(x) = Jack or V(x) = Jill.  

  Exercise 2 .  Using the interpretation described in Example 5, determine the truth 
value of each of the following wffs in I. Explain your reasoning.

   (a)    Pc → Qc  

   (b)    ∀xBcx  

   (c)    ∃x∀yBxy  

   (d)    ∃x∃yBxy       

  13.5 Logical Truth of Wffs  

  Definition 9 .   A wff is logically true , abbreviated  L-true , just in case it is true in all 
of its interpretations.  A wff is logically false , abbreviated  L-false , just in case it is 
false in all of its interpretations.  A wff is logically contingent , abbreviated  L-
contingent , just in case it is not logically true and not logically false, i.e. it is true 
in some of its interpretations and false in others. 

 The idea behind this definition is that a wff is logically true just in case it is true 

no matter how it is interpreted. A wff is logically false just in case it is false no 

matter how it is interpreted.  
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  Example 7 .  L-true wffs

   (a)    All TF-true tffs  

   (b)    ∀x(Px ∨ ∼Px)  

   (c)    ∀xPx ↔ ∀yPy  

   (d)    ∀x(Px ↔ Qx) ↔ ∀x(Qx ↔ Px)  

   (e)    ∀x(Px ∧ Qx) → ∀xPx  

   (f)    ∀x(Px ↔ ∼∼Px)  

   (g)    ∀x∀y((Pxy ∨ Qxy) ↔ (Qxy ∨ Pxy))  

   (h)    Pa → ∃xPx  

   (i)    ∃x(Px ∧ Qx) → ∃yPy  

   (j)    ∀x((Px → Qx) ∧ Pa) → Qa      

  Example 8 .  L-false wffs

   (a)    All TF-false tffs  

   (b)    ∃x(Px ∧ ∼Px)  

   (c)    ∃x(Px ↔ ∼Px)  

   (d)    ∀x(Px → Qx) ∧ ∃x(Px ∧ ∼Qx)  

   (e)    ∃xPx ∧ ∀y∼Py  

   (f)    ∃x∃yPxy ∧ ∀x∀y∼Pxy      

  Example 9 .  L-contingent wffs

    (a)     All statement letters  

    (b)     All atomic predicate forms  

    (c)     ∀xPx  

    (d)     ∃xPx  

    (e)     ∀xEy(Pxy ∧ Pyx)  

    (f)     ∀x(Px → Qx)     

 To show that a wff is not L-true it is sufficient to find a single interpretation in 

which it is false. This is called finding a  counterexample  to the claim that the wff 

is L-true. To show that a wff is not L-false it is sufficient to find a single interpreta-

tion in which it is true. This is called finding a counterexample to the claim that the 

wff is L-false. To show that a wff is L-contingent it is sufficient to show that it is 

not L-true and not L-false, i.e. it is sufficient to find an interpretation in which it is 

false and another interpretation in which it is true.  

  Example 10 .  In Example 7b it is claimed that ∀x(Px ∨ ∼Px) is L-true, i.e. that it is true 
in all its interpretations. To see why this is so let I = <D, V> be any interpretation of 
F and let I 

x
  be any extension of I to x. Suppose x is interpreted as d in I 

x
 . Then either d 

∈ V 
x
 (P) or d ∼∈ V 

x
 (P). Hence Px is true or Px is false in I 

x
 . If Px is true then so is Px 

∨ ∼Px. While if Px is false then ∼Px is true, so again Px ∨ ∼Px is true. Since the choice 
of I and I 

x
  were completely general, ∀x(Px ∨ ∼Px) is true in all of its interpretations.  
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  Example 11 .  In Example 8b it is claimed that ∃x(Px ∧ ∼Px) is L-false, i.e. that 
∃x(Px ∧ ∼Px) is false in all of its interpretations. Suppose, to the contrary, that there 
were some interpretation, I, in which ∃x(Px ∧ ∼Px) were true. Then there would 
have to be an extension I 

x
  of I and an element d of D in which Px ∧ ∼Px was true 

with x interpreted as d. Since if Px ∧ ∼Px were true in I 
x
 , both Px and ∼Px would 

have to be true in I 
x
 . If ∼Px were true in I 

x
 , Px would be false in I 

x
 . But then Px 

would be both true and false in I 
x
 . This is not possible. Hence the supposition that 

there is an interpretation in which ∃x(Px ∧ ∼Px) is true must itself be false. Hence 
there is no interpretation in which ∃x(Px ∧ ∼Px) is true. Hence ∃x(Px ∧ ∼Px) is 
false in every one of its interpretations.  

  Example 12 .  In Example 9c it is claimed that ∀xPx is L-contingent, i.e. that it has 
interpretations in which it is true and other interpretations in which it is false. To do 
this we must show that there is at least one interpretation of ∀xPx in which it is true 
and there is at least one interpretation in which it is false. To show ∀xPx is true in 
some of its interpretations, let I be an interpretation of ∀xPx where D = the set of 
all integers and P is interpreted as the property of being an integer. Clearly ∀xPx is 
true in I. To show ∀xPx is false in some of its interpretations let I be an interpreta-
tion in which P is interpreted as the property of being an elephant and let D include 
something which is not an elephant, e.g. Leo the lion. Then ∀xPx is false in I. 
Hence ∀xPx is L-contingent.  

  Exercise 3 .  Show that each of the following wffs are L-true

   (a)    ∼∀xPx → ∃x∼Px, i.e. if it is not the case that everything has property P then 

there is something which does not have property P.  

   (b)    ∼∃xPx → ∀x∼Px, i.e. if it is not the case that something has property P then 

everything lacks the property P.  

   (c)    Pa → ∃xPx, i.e if a has property P then something has property P.  

   (d)    ∀xPx → Pa, i.e. if everything has property P then a (whatever it is) has 

property P.      

  Exercise 4 .  Show that each of the following wffs are L-false.

   (a)    ∀x(Px ↔ ∼Px), i.e. everything has property P if and only if it does not have 

property P.  

   (b)    ∀x(Px → Qx) ∧ ∃x(Px ∧ ∼Qx), i.e. if anything has property P then it has 

property Q and also there is something that has property P but does not have 

property Q.  

   (c)    ∃xPx ∧ ∀y∼Py, i.e. there is something with property P and everything is such 

that it does not have property P.  

   (d)    ∃x∃yRxy ∧ ∀x∀y∼Rxy, i.e. there is an ordered pair of things such that they 

bear the relation R to each other, in that order, and also for any ordered pairs of 

things, those things do not bear the relation R to each other in that order.      
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  Exercise 5 .  For each of the following L-contingent wffs, try to find an interpreta-
tion in which it is true and an interpretation in which it is false.

   (a)    ∀xPx, i.e. everything has property P.  

   (b)    ∃xPx, I.e. something has property P.  

   (c)    ∀xEy(Pxy ∧ Pyx), i.e. for everything there is a second thing such that they bear 

the relation P to each other in that order and also in the reverse order.  

   (d)    ∃x∀y(Pxy → Qyx), i.e. there is some one thing such that it bears the relation P 

to it and everything bears the relation Q to it.       

  13.6  Using Wffs to Determine the Logical Status 
of English Statements  

 In this chapter the terms used to describe the logical status of statements have been 

distinct from the terms used to describe wffs, as is shown in the table below:

 Statements  Wffs 

 True  True in I 

 False  False in I 

 Necessarily true  Logically true, L-true 

 Necessarily false, impossible  Logically false, L-false 

 Contingent  Logically contingent, L-contingent 

 However, in many discussions of logic these distinctions are ignored or made 

using slightly different terms. For example, statements are often said to be logically 

true, logically false, logically contingent, and so on. Moreover, wffs are often said 

to be necessarily true, necessarily false, and so on. 

 The following is a generalization of the procedure TFL described earlier for try-

ing to determine whether an English language statement, S, is necessarily true, 

necessarily false, or contingent. 

  Procedure QL . Let S represent a statement in English.

   1.    Express the logical form of S as a wff, F, of quantificational logic  

   2.    Try to determine whether F is L-true, L-false, or L-contingent by

   1.    Determining whether it is of a form known to be L-true, L-false, or 

L-contingent.  

   2.    Doing a truth table to see whether it is TF-true, TF-false, or TF-contingent 

(thereby adding to your stock of known forms),  

   3.    Reasoning involving interpretations for quantificational wffs as discussed in 

this chapter,  

   4.    Reasoning involving logical equivalence (see Chapter 14), or  

   5.    Reasoning using logical implication (see Chapter 15).      

   3.    If step 2 succeeds then apply the following rules:



 13.7 Conditions Revisited    149

   1.    If F is L-true then S is necessarily true.  

   2.    If F is L-false then S is necessarily false (impossible).  

   3.    If F is L-contingent S is contingent.  

   4.    If step 2 fails then the procedure fails.         

  Example 13 .  If S is “Everything is purple or not purple” then S is necessarily true. 
In case this was not obvious the procedure could be applied thus.

   1.    One way to express the logical form of S is ∀x(Px ∨ ∼Px).  

   2.    ∀x(Px ∨ ∼Px) is in the list of L-true wffs.  

   3.    Hence S is necessarily true by step 3.1 of the procedure.      

  Example 14 .  If S is “All people are mortal and some are not mortal” then S is nec-
essarily false.

   1.    One way to express the logical form of S is ∀x(Px → Qx) ∧ ∃x(Px ∧ ∼Qx)  

   2.    ∀x(Px → Qx) ∧ ∃x(Px ∧ ∼Qx) is in the list of L-false wffs  

   3.    Hence S is necessarily false by step 3.2 of the procedure      

  Exercise 6 .  Apply Procedure QL to each of the following statements. Hint: you can 
use the lists of L-true, L-false, and L-contingent wffs given in Examples 6–8. 
Explain your reasoning.

   (a)    All programs have bugs.  

   (b)    There is something which is green and not green.  

   (c)    If all men are mortal and Socrates in a man then Socrates is mortal.  

   (d)    File7 is open and File7 is not open.       

  13.7 Conditions Revisited  

  Definition 10 .  An  open well formed form (open wff)  is the expression that results 
from replacing one or more instances of an identifier letter in a wff or open wff with 
a variable not already in the wff or open wff. In contexts where both open and ordi-
nary wffs are discussed, an ordinary wff is often said to be a  closed wff . 

 Despite its wording, Definition 10 is not circular. To get an open wff you start 

with an ordinary (closed) wff and replace one or more instances of an identifier let-

ter with a variable not already in it. Then you get another open wff by replacing one 

or more instances of an identifier letter in the newly constructed open wff with a 

variable not already in the previously opened wff. This process can be repeated 

until you run out of identifier letters in the increasingly more open wffs. 

 Notice that open wffs are not built up from simpler forms the way ordinary wffs 

are, so, for example, just because F is an open wff and G is an open wff it does not 

follow that F ∨ G is an open wff. Open wffs are obtained only by modifying wffs 

in the way described in the definition above.  
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  Definition 11 .  Variables not bound by any quantifier in an open wff are said to be 
free variables in that open wff. 

 Open well formed forms are intended to represent the logical forms of condi-

tions which may involve quantifiers.  

  Example 16 .  Some open wffs

 (a) ∀xPxy  Pxy is the scope of ∀x and the x in Pxy is bound by ∀x, 

but y is free. 

 (b) ∀xPxy ∨ ExPxa  The scope of ∀x is the first Px and its x is bound by ∀x, 

but y is free. The scope of ∃x is the second Px and its x 

is bound by ∃x. 

 (c) ∀x(Pxz ∧ EyPzy)  The scope of ∀x is (Pxz ∧ EyPzy). The scope of ∃y is 

Pyz. The x in Px is bound by ∀x and the y in Py is 

bound by ∃y, but both instances of z are Free. 

 (d) Sz → Rxyz  All three variables are free. 

 On the other hand, ∀x(Px ∧ Qx) is not an open wff because x is bound by ∀x so it 

cannot also be free. 

 There are two different ways of describing how truth and falsehood in an inter-

pretation apply to open wffs. One is to say that open wffs have no truth value with 

respect to an interpretation. Consider the open formula Rxg in an interpretation 

where R is interpreted as the taller than relation, g is interpreted as a name for a 

particular person, George, and x is an uninterpreted (or uninstantiated) variable. It 

seems reasonable to say that Rxg is neither true nor false in this situation. 

 But what about Rxg ∨ ∼Rxg and Rxg ∧ ∼Rxg? There is some temptation to 

declare that Rxg ∨ ∼Rxg is true and that Rxg ∧ ∼Rxg is false no matter how x might 

be interpreted. This attitude leads to an alternative way of treating truth for open 

wffs. This treatment defines an open wff to be true in an interpretation just in case 

its universal closure is true in that interpretation, where the universal closure of an 

open wff is the result of prefixing it with a universal quantifier for each its free vari-

ables. e.g. the universal closure of Rxy is ∀x∀yRxy. Moreover, an open wff is said 

to be false in an interpretation just in case its existential closure is false in that 

interpretation, where the existential closure of an open wff is the result of prefixing 

it with an existential quantifier for each of its free variables, e.g. the existential clo-

sure of Rxy is ∃x∃yRxy. Finally, an open wff has no truth value in an interpretation 

just in case it is neither true nor false in that interpretation. Such an open wff could 

be said to be contingent in that interpretation. For example, Rxg would have no 

truth value (or be contingent) in any interpretation in which George was not the 

tallest nor the shortest thing in the domain of the interpretation. But Rxg ∨ ∼Rxg 

would be true and Rxg ∧ ∼Rxg would be false in any interpretation of R and g. 

Fortunately, it turns out that the difference between these two ways of treating truth 

for open statements is not important for what follows, so it will be left as an open 

issue here.   
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  13.8 Summary of Classifications  

 The large number of definitions in this chapter may have left the reader a bit con-

fused. The diagrams below may help clarify things a bit. They summarize the rela-

tions among the terms defined earlier. 

closed wffs classifications

truth functional Examples quantificational

TF-true

TF-contingent

TF-false

P ∨ ~ P

∀xQx ∨ ∃x~Qx

P

∀xQx ∧ ∃x~Qx

P ∧ ~ P

L-true

L-contingent

L-false

open wffs (conditions) classifications

 In a specific interpretation, I = <D, V>, an open wff may be: 

 True of all things in I 

 True of some things in I and

false of some things in I 

 False of all things in I 

 Whether open formulas should be said to have a truth value in I was left as an 

open question.

 In general open wffs may be:  Examples 

 True of all things in all interpretations  Px ∨ ∼Px 

 True of some things in some interpretations and false 

of some things in some interpretations 

 Px 

 False of all things in all interpretations  Px ∧ ∼Px 



        Chapter 14   
 Logical Equivalence 

   Logical equivalence is important because logically equivalent statements, condi-

tions, or instructions generally accomplish the same thing. As a result, it is often 

possible to substitute a simpler, faster running, or more easily understood expres-

sion for an equivalent but more complex, slower running, or harder to understand 

expression. On the other hand, knowing that two things are not logically equivalent 

strongly suggests that one cannot be substituted for the other. After studying this 

chapter you should be able to:

   1.      Use previously established logically equivalent forms to determine that two 

statements are logically equivalent.  

   2.      Use truth tables to determine that two statements are logically equivalent.  

   3.      Use arguments involving interpretations of wffs to determine that two statements 

are logically equivalent.  

   4.     Recognize various logically inequivalent statement forms.  

   5.     Use logical equivalence to simplify statements and conditions.  

   6.      Use logical equivalence to determine whether a set of statements is redun-

dant and whether one statement is redundant with respect to a set of 

statements.        

       Outline 

  14.1 Truth functional equivalence  

  14.2 Applications of truth functional equivalence 

   14.2.1 Equivalence and simplification of program instructions  

   14.2.2 Equivalence and simplification of SQL select instructions   
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   14.3.1 Logical equivalence of wffs 

   14.3.2 Logical equivalence of Conditions  

  14.4 Applications of logical equivalence  

   14.4.1 Equivalence and simplification of problem specifications  

   14.4.2 Detecting redundancy    
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  14.1 Truth Functional Equivalence  

 Recall that two statements are materially equivalent just in case they have the 

same truth value. For example, it might be that today is Tuesday and that it is 

raining. In that case the statement “Today is Tuesday” and the statement “It is 

raining” are materially equivalent. But this equivalence is contingent. For 

example, if it is still raining tomorrow then the first statement will be false 

while the second is true, so tomorrow the two will not be materially 

equivalent. 

 On the other hand, logical equivalence of two statements requires that it be nec-

essary that the two statements have the same truth value. For example, the statement 

“Today is Tuesday or it is raining” and the statement “It is raining or today is 

Tuesday” must necessarily have the same truth value in all circumstances, i.e. they 

are logically equivalent. More generally any two statements, one of the form “P ∨ Q” 

and the other of the form “Q ∨ P” are logically equivalent. As with logical truth, an 

analysis of logical forms and their interpretations will often help to determine logi-

cal equivalence in complex cases. Truth functional equivalence, defined below, is 

the easy case of logical equivalence. 

  Definition 1 .  Two tffs, F 
1
  and F 

2
 , are truth functionally equivalent, abbreviated 

TF-equivalent, just in case F 
1
  ↔ F 

2
  is TF-true, i.e. F 

1
  ↔ F 

2
  has all Ts in its main 

column, i.e. F 
1
  ↔ F 

2
  is a tautology. The symbol ≡ will be used here to represent 

truth functional equivalence. For example, P ≡ Q will represent the claim that P 

is TF-equivalent to Q.  

  Example 1 .  Let P, Q, and R be any tffs and let T represent any TF-true tff and 

F represent any TF-false tff, then the following TF-equivalence claims are 

true.

   (a)    P ∧ Q ≡ Q ∧ P  

   (b)    P ∨ Q ≡ Q ∨ P  

   (c)    (P ∧ Q) ∧ R ≡ P ∧ (Q ∧ R)  

   (d)    (P ∨ Q) ∨ R ≡ P ∨ (Q ∨ R)  

   (e)    P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)  

   (f)    P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)  

   (g)    P ∨ F ≡ P  

   (h)    P ∧ T ≡ P  

   (i)    P ∨ ∼P ≡ T  

   (j)    P ∧ ∼P ≡ F     

 To show that F 
1
  and F 

2
  are not TF-equivalent it is only necessary to find a single 

row of the truth table for F 
1
  ↔ F 

2
  it which it is false.  

  Example 2 .  The pair of tffs in each row are not logically equivalent.
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 (a) P  ∼P 

 (b) P ∧ Q  P ∨ Q 

 (c) P → Q  Q → P 

 (d) ∼(P ∨ Q)  ∼P ∨ ∼Q 

  Exercise 1 .  Determine whether each pair of tffs below are TF-equivalent by using 

truth tables.

 (a) P  ∼∼P 

 (b) ∼P  ∼∼∼P 

 (c) P ∧ Q  Q ∧ P 

 (d) ∼(P ∨ Q)  ∼P ∧ ∼Q 

 (e) P ∨ Q  Q ∨ P 

 (f) P ∨ (Q ∧ R)  (P ∨ Q) ∧ R 

 (g) P ∧ (Q ∨ R)  (P ∧ Q) ∨ (P ∧ R) 

 (h) P ∨ (Q ∧ R)  (P ∨ Q) ∧ (P ∨ R) 

 (i) P ∨ Q  ∼(∼P ∧ ∼Q) 

 (j) ∼(P ∧ Q)  ∼P ∧ ∼Q 

 (k) P ∨ ∼Q  ∼(∼P ∧ Q) 

 (l) P ∧ Q ∨ ∼P ∧ ∼Q  P ↔ Q 

 (m) ∼(P ↔ Q)  (P ∧ ∼Q) ∨ (∼P ∧ Q) 

  14.2 Applications of Truth Functional Equivalence  

 Recall that in algebra, one expression can be replaced by another provided the 

two expressions are algebraically equivalent, e.g. a 2  + 2ab + b 2  can be replaced by 

(a + b) 2  and if a = 2x then (a + b) 2  = (2x + b) 2 . Similarly, one statement can be 

replaced by another provided the two are logically equivalent. In particular, a 

simpler statement can replace a more complex statement provided the two are 

logically equivalent. 

  14.2.1 Equivalence and Simplification of Program Instructions 

 In programming language instructions a condition can be substituted for another 

which is TF-equivalent without changing the behavior of the program. For exam-

ple, the following two instructions will result in the same program behavior, 

assuming that short cut evaluation is not used.
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   If not(X > 0 or Y < 0) then

   Print ‘Hello’     

  Else

   Print ‘Goodbye’     

  Endif  

  If not(X > 0) and not(Y < 0) then

   Print ‘Hello’     

  Else

   Print ‘Goodbye’     

  Endif    

 To see why this is so, let “P” represent “X > 0” and “Q” represent “Y < 0” Then 

examine the truth table for the equivalence ∼(P ∨ Q) ↔ ∼P ∧ ∼Q displayed 

below . 

P Q ~(P ∨ Q) ↔ ~P ∧ ~Q

T T F T T F F F 

T F F T T F F T

F T F T T T F F

F F T F T T T T 

 Here the fact that the equivalence is a tautology guarantees that there are no 

circumstances under which the two instructions could result in different behavior, 

no matter what values X and Y might have. Even short cut evaluation would not be 

a problem in this example, unless Y were undefined. 

 On the other hand, the following two instructions will not always result in the 

same behavior.

   1.    If X > 0 and (Y < X or Y < 0) then

   Print ‘Hello’    

 Else

   Print ‘Goodbye’    

 Endif  

   2.    If (X > 0 and Y < X) or Y < 0 then

   Print ‘Hello’    

 Else

   Print ‘Goodbye’    

 Endif     

 To see why these instructions could result in different behaviors, examine the 

truth tables for the two conditions. In them “P” stands for “X > 0”, “Q” stands for 

“Y < X”, and “R” stands for “Y < 0.”  
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P Q R P and (Q or R) (P and Q) or R

T T T T T T T

T T F T T T T

T F T T T F T

T F F F F F F

F T T F T F T

F T F F T F F

F F T F T F T

F F F F F F F

 In most cases the two statements are materially equivalent, i.e. they have the 

same truth value. In the two underlined cases they are not materially equivalent. 

The truth value assignments in those two cases describe the circumstances under 

which the two instructions would result in different behaviors. For example, if X 

and Y were both –7. In general, if X is not >0 and Y is <0 the two instructions will 

behave differently. Also notice that the truth value of “Y < X” makes no difference 

in these two cases. While this is a simple example, this kind of information can be 

invaluable when you are trying to read or debug a program. 

  Exercise 2 .  Use truth tables to determine which of the following pairs of programming 

language instructions are TF-equivalent. In case they are not, specify the conditions 

under which they will give rise to different behaviors. Assume that shortcut evaluation 

is not used.

   (a)    If x > 0 and (y < x or z < y) then Print ‘Hello’ Endif

   If (x > 0 and y < x) or z < y then Print ‘Hello’ Endif     

   (b)    If not (x > 0 and not z < y) then Print ‘Hello’ Endif

   If z < y or not x > 0 then Print ‘Hello’ Endif     

   (c)    If not (x > 0 and z < y) then Print ‘Hello’ Endif

   If not z < y or not x > 0 then Print ‘Hello’ Endif     

   (d)    If (x > 0 or not y < x) and z < y then Print ‘Hello’ Endif

   If not z < y and (not y < x or x > 0) then Print ‘Hello’ Endif     

   (e)    While (not(x > 0 and y < z))

   print (x, y)  

  x ← x - y    

 endwhile 

 While (not y < z and x > 0)

   print (x, y)  

  x ← x − y    

 endwhile  

   (f)    While (not(x > 0 and not y < z))
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   print (x, y)  

  x ← x − y    

 endwhile 

 While (x > 0 or not y < z))

   print (x, y)  

  x ← x − y    

 endwhile       

  14.2.2 Equivalence and Simplification of SQL Select Instructions 

 If P and Q are TF-equivalent, then Q can be substituted for P in SQL SELECT 

instructions, assuming there are no null fields in the data table involved. For exam-

ple, the following two SQL instructions give the same results because their WHERE 

conditions are TF-equivalent.

   SELECT description, color, sell_price  

  FROM items  

  WHERE not (color = blue or on_hand < 100)  

  SELECT description, color, sell_price  

  FROM items  

  WHERE not (color = blue) and not (on_hand < 100)    

 To see that this is so, let P represent “color = blue” and Q represent “on_hand < 100”, 

then the truth table for the equivalence is:  

P Q (~(P ∨ Q)) ↔ (~P ∧ ~Q)

T T F T T F F F

T F F T T F F T

F T F T T T F F

F F T F T T T T

 The fact that the equivalence is a tautology shows that there are no circumstances 

under which the two SQL statements could generate different reports, no matter 

what data was in the table, as long as there were no null data values. 

  Exercise 3 .  Use truth tables to determine which of the following pairs of SQL 

instructions are TF-equivalent. In case they are not, specify the conditions under 

which they could give rise to different reports. Do not assume anything about what 

data is in the tables, but do assume that there are no nulls in the data tables.

   (a)    SELECT supplier, item_number

   FROM suppliers  

  WHERE not (unit_price = 3.00 and qty100_price > 500.00)  

  SELECT supplier, item_number  
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  FROM suppliers  

  WHERE not (unit_price = 3.00) and not (qty100_price > 500.00)     

   (b)    SELECT supplier, item_number

   FROM suppliers  

  WHERE not (item_number = 11111 and not (qty100_price > 300.00))  

  SELECT supplier, item_number  

  FROM suppliers  

  WHERE qty100_price > 300.00 or not (item_number = 11111)     

   (c)    SELECT item_number, sell_price

   FROM items  

  WHERE color = ‘blue’ and on_hand < 100 or on_order = 0  

  SELECT item_number, sell_price  

  FROM items  

  WHERE (color = ‘blue’ or on_hand < 100) and (color = ‘blue’ or on_order = 0)     

   (d)    SELECT description, color

   FROM items  

  WHERE (on_hand < on_order or on_hand < 100) and sell_price < 9.00  

  SELECT description, color  

  FROM items  

  WHERE on_hand < on_order or (on_hand < 100 and sell_price < 9.00)           

  14.3 Logical Equivalence  

  14.3.1 Logical Equivalence of Wffs 

  Definition 2 .   Two wffs, F  
 
1

 
   and F  

 
2

 
 ,  are logically equivalent , abbreviated  L-

equivalent,  if and only if F 
1
  ↔ F 

2
  is logically true. This is equivalent to saying that 

two wffs are  logically equivalent if and only if they have the same truth value in 

every interpretation of them. The symbol ≡ will be extended here to represent 

logical equivalence as well as truth functional equivalence, so F 
1
  ≡ F 

2
  will represent 

the claim that F 
1
  is logically equivalent to F 

2
 . 

 If two statements are TF-equivalent, then they are L-equivalent, so if F 
1
  ↔ F 

2
  is 

a tautology then F 
1
  ≡ F 

2
  in this extended sense of ≡.  

  Example 3 .  Let P and Q be one-place predicate letters, R be a two-place 

predicate letter, and b be an identifier letter, then the following L-equivalences 

hold.

   (a)    ∀xPx ≡ ∀yPy  

   (b)    ∀xPx ≡ ∼∃x∼Px  

   (c)    ∃xPx ≡ ∼∀x∼Px  

   (d)    ∀x∀yRxy ≡ ∀y∀xRxy  
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   (e)    ∃x∀yRxy ≡ ∃y∀xRyx  

   (f)    ∀xPx → Q ≡ Q ∨ ∃x∼Px  

   (g)    ∀x(Px ∧ Qx) ≡ ∀xPx ∧ ∀xQx  

   (h)    ∃x(Px ∨ Qx) ≡ ∃xPx ∨ ∃xQx  

   (i)    ∼(Px ∧ Qx) ≡ ∼Px ∨ ∼Qx  

   (j)    Px → Qx ≡ ∼Qx → ∼Px  

   (j)    ∼∀x(Px → Qx) ≡ ∃x(Px ∧ ∼Qx)  

   (k)    ∀xPx → P ≡ P ∨ ∼∀xPx  

   (l)    P ∨ ∼∀xPx ≡ P ∨ ∃x∼Px  

   (m)    ∀x(Px ∧ Qx) ≡ ∀xPx ∧ ∀xQx  

   (n)    ∃x(Px ∨ Qx) ≡ ∃xPx ∨ ∃xQx      

  Example 4 .  The pair of wffs in each row are not logically equivalent.

 (a) ∀x(Px ∨ Qx)  ∀xPx ∨ ∀xQx 

 (b) ∀x∃yQxy  ∃y∀xQxy 

 (c) ∃x(Px ∧ Qx)  ∃xPx ∧ ∃xQx 

 (d) ∀x(Px → Qx)  ∀xPx → ∀xQx 

  14.3.2 Logical Equivalence of Conditions 

 Two conditions can be accidentally (contingently) equivalent in the sense of being 

true of exactly the same things, e.g. the condition “x is a student in my class who 

is taller than 7 feet” and the condition “x is a student in my class who is on our 

basketball team” might accidentally be true, but there is no necessary connection 

between them 

 On the other hand, the condition “x is tall and x is green” is necessarily true of 

exactly the same things as is the condition “x is green and x is tall.” 

  Definition 3 .   Two open wffs (conditions), C  
 1 
  v  

 1 
  v  

 2 
 … v  

 n 
  and  C  

 2 
  v  

 1 
  v  

 2 
 … v  

 n 
  with free 

variables  v  
 1 
  v  

 2 
 … v  

 n
,
 
  are logically equivalent if and only if they are true and false of 

the same n-tuples of things in all their interpretations. They are logically inequivalent 

if and only if there is some interpretation in which there is at least one n-tuple of 

things for which they have different truth values.  

  Definition 4 .  If  C  
 1 
 v 

 1 
  v  

 2 
 … v  

 n 
  is any condition with free variables  v  

 1 
  v  

 2 
 … v  

 n 
  then 

 ∀v∀v  
 
2

 
 … ∀v  

 n 
  C  

 1 
  v  

 1 
  v  

2
 … v  

 n 
  is called the universal closure of  C  

 1 
  v

   1 
  v  

2
 … v  

 n 
 . 

 Definition 2 above is equivalent to saying that two conditions with the same free 

variables are logically equivalent just in case their universal closures are logically 

equivalent in the sense of Definition 1 above.  
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  Example 5 .  The following pairs of conditions are logically equivalent.

 (a) Px ∨ Qx  Qx ∨ Px 

 (b) ∀xRxy  ∼∃x∼Rxy 

 (c) ∼∀zQxyz  ∃z∼Qxyz 

 (d) ∀x(Rxy → Qxy)  ∀x(∼Qxy ∨ Rxy) 

 (e) ∼(Px ∧ Qx)  ∼Px ∨ ∼Qx 

 (f) Px → Qx  ∼Qx → ∼Px 

  Exercise 4 .  Explain why the following logical equivalence claims are true.

   (a)    ∀xPx ≡ ∀yPy  

   (b)    ∀xPx ≡ ∼∃x∼Px  

   (c)    ∃xPx ≡ ∼∀x∼Px  

   (d)    ∀x∀yPxy ≡ ∀y∀xPxy      

  Exercise 5 .  For each of the pairs of wffs below, find an interpretation in which one 

of them is true and the other is false. Hint for item c the fact that every pen in my 

desk has either red ink or black ink is not the same as every pen in my desk having 

red ink or every pen in my desk having black ink.

 (a) P  ∼P 

 (b) P ∧ Q  P ∨ Q 

 (c) ∀x(Px ∨ Qx)  ∀xPx ∨ ∀xQx 

 (d) ∃x(Px ∧ Qx)  ∃xPx ∧ ∃xQx 

 (e) ∀x∃yQxy  ∃y∀xQxy 

 (f) ∀x∃yQxy  ∀x∃yQyx 

 The following procedure, while not guaranteed to determine logical equivalence in 

every case, will work in most simple cases. 

  Procedure LEQ . Let S 
1
  and S 

2
  be two statements.

   1.    Represent the logical form of S 
1
  by the wff F 

1
  and the logical form of S 

2
  by the 

wff F 
2
 .  

   2.    Try to determine whether F 
1
  and F 

2
  are logically equivalent by:

    1.    Showing that F 
1
  and F 

2
  are instances of known equivalent forms,  

    2.    Using truth tables to show that they are truth functionally equivalent, or  

    3.    Reasoning about quantifiers, variables, and interpretations.      

   3.    Interpret the results of your effort.

    1.    If F 
1
  and F 

2
  are logically equivalent then S 

1
  and S 

2
  are logically (necessarily) 

equivalent.  

    2.    Otherwise, the test fails and no definite conclusion can be drawn.         

 Obviously if the wffs representing the logical forms of S 
1
  and S 

2
  are instances of 

forms already known to be logically equivalent then S 
1
  and S 

2
  are logically equiva-

lent. For example, suppose S 
1
  is “If every record in this file was processed yesterday 

then today is Friday” and S 
2
  is “Today is Friday or there is a record in this file that 
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was not processed yesterday.” The logical forms of S 
1
  and S 

2
  can be expressed as 

∀xPx → Q and Q ∨ ∃x∼Px respectively. Since this is (an instance of) logical 

equivalence f in Example 3 above, S 
1
  and S 

2
  are logically equivalent by clause 2.1 

of Procedure LEQ. 

 Even when quantifiers are present, it is often possible to show that two state-

ments are logically equivalent by using truth tables, without having to deal with 

quantifiers. For example, suppose S 
1
  is “If every record in the payroll file was proc-

essed yesterday and today is Friday then we will be paid today.” and S 
2
  is “Either 

not every record in the payroll file was processed or today is not Friday or we will 

be paid today.” One way to express the logical forms of S 
1
  is to represent it by the 

wff, P ∧ Q → R, not bothering to represent the quantificational structure of S 
1
 . In 

the same spirit, the logical structure of S 
2
  can be represented by ∼P ∨ ∼Q ∨ R. The 

truth table for these two wffs is given below . 

P Q R P ∧ Q → R (~P ∨ ~Q) ∨ R

T T T  T T F T

T T F  T F F F

T F T  F T T T

T F F  F T T T

F T T  F T T T

F T F  F T T T

F F T  F T T T

F F F  F T T T

 Since the final column of each truth table is the same, the two wffs are truth function-

ally equivalent. Hence S 
1
  and S 

2
  are logically equivalent by clause LEQ 2.2. 

 When recognizing instances of previously established logically equivalent 

forms and doing truth tables both fail, it may be useful to reason about quantifica-

tional structure. Consider, Example 2b, the pair of wffs ∀xPx and ∼∃x∼Px. To 

show that they are logically equivalent it is sufficient to show that in all their 

interpretations if one of them is true then the other is true and if one of them is 

false then the other is false. Let I be any interpretation and suppose that ∀xPx is 

true in I. By definition this means that Px is true of everything in the domain of I, 

i.e. that Px is true in every extension I 
x
  of I to x. Therefore, it is not the case that 

there is something in the domain of I of which Px is false. And this implies that 

∃x∼Px is false in I, hence ∼∃x∼Px is true in I. On the other hand, suppose ∀xPx 

is false in I. This means that it is not the case that Px is true of everything in the 

domain of I. Hence, there is something in the domain of I of which Px is false. 

Hence ∃x∼Px is true in I. Hence ∼∃x∼Px is false in I. Hence the two wffs are 

logically equivalent.    
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  14.4 Applications of Logical Equivalence  

  14.4.1 Simplification of Problem Specifications 

  Definition 5 .  If S is a finite set of statements or wffs, the notation (∧S) will be use 

to denote the conjunction of the elements of S.  

  Example 5 .  If S = {P ∨ Q, ∼Q, R → ∀xHx) then (∧S) = (P ∨ Q) ∧ (∼Q) ∧ (R →
∀xHx). 

 Using this notation makes it easy to describe extensions of various logical terms 

originally defined on individual statements or wffs to finite sets of statements or 

wffs. Here are some examples.  

  Definition 6 .   A finite set, S, of wffs is L-true, L-false, or L-contingent  just in case 

(∧S) is L-true, L-false, or L-contingent. Two sets of wffs, S 
1
  and S 

2
 , are L-equivalent 

just in case (∧S 
1
 ) and (∧S 

2
 ) are L-equivalent. 

 Since problem specifications are sets of statements or conditions, to show that 

two problem specifications, S 
1
  and S 

2
 , are L-equivalent, it is sufficient to show that 

(∧S 
1
 ) ≡ (∧S 

2
 ).   

  14.4.2 Detecting Redundancy 

  Definition 7 .   A wff R is logically redundant relative to a collection of wffs S  just in 

case (∧S) is logically equivalent to (∧(S ∪ {R})). This amounts to saying that 

adding R to S would not change the conditions under which (∧S) would be true. 

 For example, let S = {(P ∨ Q), (∼(P ∧ Q))} and let R be P→Q. Then R is not 

logically redundant relative to S, as is shown by the middle part of the truth tables 

below. 

not redundant redundant

P Q (P ∨ Q)∧~(P ∧ Q) = (∧S) (∧S)∧(P → Q) (∧S)∧~(P ↔ Q)

T T  T F F T  F F T  F F F T

T F  T T T F  T F F  T T T F

F T  T T T F  T T T  T T T F

F F  F F T F  F F T  F F F T

 On the other hand, “∼(P↔Q)” is redundant relative to S, as is shown by the right-

most part of the truth tables above.  
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  Exercise 6 .  Determine whether the statement on the right is logically redundant 

relative to the set of statements on the left.

    Set of statements  Statement 

 (a)  {P}   Q ∨ (∼Q) 

 (b)  {P ∧ (∼P)}  Q 

 (c)  {P ∨ Q, Q ∨ R, ∼Q}  R ∧ P 

 (d)  {P → Q, Q ∨ R, ∼P}  ∼Q 

 Sometimes a set all by itself is said to be redundant, rather than saying that a 

statement is redundant relative to a set. Specifically, a finite set of statements, S, is 

said to be logically redundant if and only if there is a proper subset, B, of S such 

that (∧S) is logically equivalent to (∧B). Another way to say this is to say that S is 

L-redundant if and only if one or more of its statements could be removed without 

changing the truth table of its conjunction, i.e. if and only if one of its statements 

is L-redundant relative to the rest of it. 

 For example, the truth tables above show that S itself is not logically redundant, 

because if either component of S is removed, S becomes the set consisting of just 

the other component, and neither component has a truth table equivalent to (∧S). 

On the other hand, the fact that ∼(P↔Q) is TF-redundant relative {(P ∨ Q), (∼(P ∧ 

Q))} implies that {(P ∨ Q), (∼(P ∧ Q)),∼(P↔Q)} is redundant.  

  Exercise 7 .  Determine which of the following sets of statements are L-redundant 

and which are not. Note that showing that a set of statements is not L-redundant 

requires separately investigating what happens when each element of S is removed, 

e.g. by removing each component of the original set S in turn and, for each of them, 

comparing the truth table for (∧S) with the truth table for (∧S) with that element of 

S removed. You might also find some shortcut in particular cases.

   (a)    {P, ∼P, ∼∼P}  

   (b)    {P∧Q, (P∧Q}  

   (c)    {P∧Q, P, Q}  

   (d)    {P∨Q, Q∨R, P∨R}                



        Chapter 15   
 Logical Implication and Validity       

  Recall that logic is about general criteria and methods of correct reasoning 

expressed in arguments. When used to analyze arguments that have already been 

constructed, logic is being used critically. When used to create new arguments logic 

is being used constructively. The next chapter describes some methods for using 

logic constructively. This chapter describes some methods for using logic critically. 

After studying it you should be able to:

   1.    Explain what it means for an argument to be valid.  

   2.    Describe the relations among true premises, true conclusions, validity, and 

soundness. Give examples of arguments having various logical characteris-

tics and explain why certain combinations of those characteristics are 

impossible.  

   3.    Explain the difference between formal and informal methods of showing validity.  

   4.    Use informal methods to determine whether simple arguments are valid or 

invalid and explain your conclusions.  

   5.    Use the truth table test to investigate the validity of arguments.  

   6.    Use reasoning based on quantifiers and interpretations of wffs to investigate the 

validity of arguments.        
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  15.1 Logical Implication and Validity  

  15.1.1 Logical Implication 

  Definition 1 .   A finite set of statements, P, logically implies a statement C  just in 
case it is not possible for all the elements of P to be true and C false. 

 Another way to put this definition is that P logically implies C means that if all the 

statements in P were true then C would have to be true. It follows from this definition 

that to show that P does not logically imply C it is sufficient to find a single possible sit-

uation in which (∧P) would be true and C would be false. This definition also implies 

that if two statements are logically equivalent then each logically implies the other.   

  15.1.2 Logical Validity 

 When statements such as are mentioned in Definition 1 are presented as an argu-

ment then Definition 2 applies. 

  Definition 2 .  An argument with premises P and conclusion C is  valid  just in case 
(∧P) logically implies C. 

 An equivalent way to express Definition 2 is to say than an argument is valid just 

in case it is logically impossible for all of its premises to be true and its conclusion 

false. The general problem of determining whether an argument is valid is very 

hard. Fortunately, there are many useful easy cases.  

  Example 1 .  Compare the following arguments. 

 Premise  The program crashed.  

 Conclusion There is a syntax error in the program. 

 Premise The error was a syntax error or a run time error. 

 Premise  The error was not a syntax error.  

 Conclusion The error was a run time error. 

 The first argument is not valid, because the premise could be true and the conclu-

sion false. For example the program could be syntax error free and could have 

crashed because a file was missing from a storage device. 

 The second argument is valid, because the conclusion could not possibly be false 

if the premises were both true. Another way to say this is to say that the premises 

of the second argument logically imply its conclusion.   

  15.1.3 Soundness 

  Definition 3 .  An argument is  sound  just in case it is valid and all of its premises are 
true. 
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 Sound arguments are the gold standard of reasoning because  the conclusion of a 
sound argument must be true!  Used critically, showing that an argument is sound 

(valid and that its premises are all true) allows us to conclude that its conclusion is 

true. Used constructively, sound reasoning helps people discover new truths by 

reasoning validly from true premises to new true conclusions.  

  Exercise 1 .  Suppose you could establish that an argument was valid but that its 
conclusion was false. What would that imply about its premises? 

 The terms “valid” and “sound” are often incorrectly applied to statements. Strictly 

speaking only arguments can be valid or invalid, sound or unsound. Similarly, “true” 

and “false” are sometimes incorrectly applied to arguments. Strictly speaking only 

statements (such as premises and conclusions) can be true or false. 

 Understanding the relations among validity and soundness of arguments as well 

as truth and falsity of their premises and conclusions is fundamental to being able 

to use logic. It is also difficult. The examples and exercises below are designed to 

make these relations a bit clearer. 

 Each row of the table below lists one combination of truth or falsity of 

premises and conclusions and validity and soundness of arguments. Some of 

these combinations are possible and some are not. The following examples dis-

cuss some rows of the table. Similar discussions of the other rows are left as 

exercises. For each row the problem is to determine whether there could be an 

argument with the combination of properties listed in that row. If there could be 

such an argument then give an example of one. If no such argument is possible 

then explain why.

 Row  Premises  Conclusion  Validity  Soundness 

  1  All T  T  V  S 

  2  All T  T  V  U 

  3  All T  T  I  S 

  4  All T  T  I  U 

  5  All T  F  V  S 

  6  All T  F  V  U 

  7  All T  F  I  S 

  8  All T  F  I  U 

  9  Some T Some F  T  V  S 

 10  Some T Some F  T  V  U 

 11  Some T Some F  T'  I  S 

 12  Some T Some F  T  I  U 

 13  Some T Some F  F  V  S 

 14  Some T Some F  F  V  U 

 15  Some T Some F  F  I  S 

 16  Some T Some F  F  I  U 

 17  All F  T  V  S 

 18  All F  T  V  U 

 19  All F  T  I  S 

 20  All F  T  I  U 
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 Row  Premises  Conclusion  Validity  Soundness 

 21  All F  F  V  S 

 22  All F  F  V  U 

 23  All F  F  I  S 

 24  All F  F  I  U 

  Example 2 .  Row 1: Could there be an argument with all true premises and a true 
conclusion which is valid and sound? Yes. These are the ideal kinds of arguments. 
The classic example is

   All men are mortal.  

   Socrates is a man.   

  Socrates is mortal.    

 All the premises are true and the conclusion is true. The argument is valid 

because, even without knowing that the premises are true, it is clear that if they 

were true then the conclusion would also have to be true, i.e. it is not possible for 

the premises to all be true while the conclusion is false. The argument is sound 

because it is valid and all its premises are true.  

  Example 3 .  Row 2: Could there be an argument with all true premises and a true 
conclusion which is valid but not sound? No. By definition if an argument is valid 
and all its premises are true then it is sound.  

  Example 4 .  Row 8: Could there be an argument with all true premises and a false 
conclusion which is invalid and unsound? Absolutely. Almost any argument in which 
the conclusion has nothing to do with the premises is an example. Here is one.

   All men are mortal.  

   Socrates is a man.   

  5 < 3.    

 All the premises are true, the conclusion is false. The truth of the premises has 

nothing to do with the conclusion, so the argument is invalid. Since it is invalid it 

must also be unsound.  

  Example 5 .  Row 9: Could there be an argument with some true and some false 
premises and a false conclusion which is valid and sound? No. To be sound all its 
premises must be true.  

  Example 6 .  Row 10: Could there be an argument with some true and some false 
premises and a true conclusion which is valid and unsound? Yes. Here is an 
example.

   All horses are animals.  

   All animals are mammals.   

  All horses are mammals.    
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 The first premise is true and the second is false. So it is not sound. The conclusion is 

true. Moreover, if both premises were true then the conclusion would have to be true.  

  Example 7 .  Row 22: Could there be an argument with all false premises and a false 
conclusion which is valid and unsound? Yes. Here is an example.

   All horses have wings.  

   All things with wings can write computer programs.   

  All horses can write computer programs.    

 Both premises and the conclusion are false and, hence, the argument is unsound. 

But it is valid. If the premises were true then the conclusion would also have to be 

true. The point is that validity cannot be determined by just knowing the truth or 

falsity of premises and conclusion. Validity depends upon the relation between 

the premises and the conclusion. Here is another example, where the truth values 

of the premises and conclusion are unknown.

    All galaxies more than one billion light years from Earth have  

   black holes in their centers.   

  The next galaxy we discover which is more than one billion light  

  years from earth has a black hole in its center.    

 This argument is obviously valid, but its validity has nothing to do with the truth 

or falsity of its premise or conclusion, since we know it is valid but we do not know 

the truth values of its premise and conclusion.  

  Exercise 2 .  For each of the remaining rows of the table, do an analysis as was done 
in the examples above. This is not as laborious a task as it may seem. You can 
eliminate several rows at a time, for example an argument cannot be sound and 
invalid, so rows 3, 7, 11, 15, 19, and 23 can all be treated at once. The hard part will 
be coming up with example arguments for some of the rows that are possible.    

  15.2 Determining Validity  

  15.2.1 Degrees of Formality 

 The various ways of trying to determine whether an argument is valid differ in 

degree of formality. 

 Trying to establish by informal methods that a specific argument or argument 

form is valid consist of (1) including the definitions of the terms used in the argument 

as implicit premises, (2) ignoring the actual truth or falsity of the premises and 

conclusion, and (3) trying to establish that in all logically possible cases in which 

the premises would all be true, the conclusion would also have to be true. Hence 

the ability to think hypothetically about all logical possibilities is critical to determin-

ing validity. Establishing validity by informal means can range from being easy to 

being extremely difficult. 
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 To establish that an argument or argument form is invalid by informal methods 

it is only necessary to find a logically possible example in which all the premises 

of the argument would be true while the conclusion was false. This usually involves 

using the definitions of terms and may involve appeal to the actual truth or falsity 

of premises and conclusions, since any actual situation is also a logically possible 

situation. 

 Analyzing individual arguments for validity by using informal methods is often 

much easier than using formal methods, and sometimes it is just the right thing to 

do. However, it can also be very time consuming and unreliable. Fortunately there 

are methods for determining the validity or invalidity of arguments by using the 

argument forms while de-emphasizing or ignoring the meanings of the terms used 

in the arguments. These formal methods are very powerful. They embody the parts 

of logic which are best understood. 

 However, there are important tradeoffs between informal and formal methods. 

While informal methods can be very powerful they tend to focus attention on the 

details of a specific problem while formal methods tend to lead to general conclu-

sions about all arguments of a certain form. Formal methods are often more trouble 

to use than informal methods. However, properly applied, formal methods can 

reduce confusion and lead to correct results that are difficult to get informally. 

Moreover, the study of formal methods helps people use informal methods with 

fewer errors. Finally, purely formal methods can be automated while informal 

methods cannot, at least not now, be automated. The formal methods discussed here 

might be called partially formal since they involve informal reasoning used to dis-

cuss statement forms and argument forms. Formal reasoning will be discussed 

briefly in the next chapter.  

  15.2.2 Arguments and Corresponding Conditionals 

 Corresponding to every argument with premises P 
1
 …P 

n
  and conclusion C there is a 

conditional statement of the form “If P 
1
  and P 

2
 … and P 

n
 , then C.” While closely 

related to each other, an argument and its corresponding conditional are not the same 

thing. An argument is a collection of two or more statements while the corresponding 

conditional is a single statement. An argument may be valid or invalid, sound or 

unsound, but it may not be true or false. The corresponding conditional may be true 

or false, but it may not be valid, invalid, sound, or unsound. The truth table test below 

exploits the close relation between an argument and its corresponding conditional. 

  Example 8 .  The statement

   If today is Friday then today is payday.    

is a conditional statement. It is either true or false. It is not an argument. The corre-

sponding argument is

   Since today is Friday, it must be that today is payday.    
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 Because it is an argument it is either valid or invalid but it is neither true nor false. In 

the conditional statement “Today is Friday” is called the antecedent and in the argu-

ment it is called a premise. The statement “Today is payday.” is called the consequent 

of the conditional statement and it is called the conclusion of the argument.  

  Example 9 .  If an argument has several premises then forming the corresponding 
conditional requires conjoining the premises with “and.” For example, the following 
argument:

   It is raining or it is snowing.  

  If it is raining then the sidewalk is wet.  

   If it is snowing then the sidewalk is frozen.   

  The sidewalk is wet or it is frozen.   

has the following corresponding conditional:

   If ((It is raining or it is snowing) and (If it is raining then the  

  sidewalk is wet) and (If it is snowing then the sidewalk is frozen))  

  then (The sidewalk is wet or it is frozen.)     

  Example 10 .  The logically relevant aspects of Example 9 can be more clearly 
expressed using wffs. Let R represent “It is raining,” S represent “It is snowing,” W 
represent “The sidewalk is wet,” and F represent “The sidewalk is frozen.” Then, using 
logical notation for connectives, the argument of Example 9 is represented by

   R ∨ S  

  R → W  

   S → F   

  W ∨ F    

 The corresponding conditional is

   ((R ∨ S) ∧ (R → W) ∧ (S → F)) → (W ∨ F)     

  Exercise 3 .  Write the conditional corresponding to the following argument, as was 
done in the Example 9.

   For every number there is a number such that their sum = 0.  

   3 is a number.   

  There is a number such that it plus 3 = 0.     

  Exercise 4 .  Use predicate letters, variables, quantifiers, symbols for connectives to 
represent the argument of Exercise 3 and the corresponding conditional, as was 
done in Example 10.   

  15.2.3 Truth Functional Validity 

  Definition 4 .  If an argument can be shown to be valid using truth functional 
considerations alone, then it is said to be  truth functionally valid .  
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  15.2.3.1 Informal Methods 

  Example 11 .  Recall some of the examples discussed in Chap. 4.

   (a)     Today is Monday  

 Tomorrow must be Friday. 

  Clearly invalid. Any Monday not followed by a Friday is a counterexample. Since 

all Mondays are like that, there are lots of counterexamples.  

   (b)     The sky is dark and it is raining just west of here . 

 It will probably rain here soon, 

  This is an inductive argument, as indicated by the word “probably” in the con-

clusion. So its validity is not relevant. As an inductive argument, if rainy 

weather around “here” generally travels from West to East and this is all the 

information available about this specific situation then this is a fairly good 

inductive argument.  

   (c)     A = 3, B = 5  

 Therefore A + B = 8. 

  If the definition of integer addition is allowed as an implicit premise then this is a 

valid argument.  

   (d)    This is a compound argument.

    Since the file is sorted .  

  It must be in ascending or descending order.    

 Valid, given the definition of “sorted” as an implicit premise.

   It must be in ascending or descending order.  

   It is not in ascending order .  

  Hence it is in descending order.    

 Also valid since it is not possible for there to be only two possibilities and have one 

eliminated, without the other possibility being the case.  

   (e)    I have tested this program with hundreds of test cases.

    It worked correctly in each case .  

  This program is correct.    

 Not valid. Anyone who has done much program testing will tell you that it is possi-

ble to test a program thousands of times and still have undetected errors. Even the 

weaker conclusion “Hence this program is probably correct” would not make this 

a good inductive argument.  

   (f)    The program used to work perfectly.

   Then you modified it.  

   Now it doesn’t work perfectly .  

  You ought to work on it some more.    
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  Clearly invalid. Perhaps you ought not to be allowed near it ever again or perhaps 

someone else also worked on it and they introduced the problem.  

   (g)    FCOUNT must be = 0 or > 0 at line 20.

    If FCOUNT > 0 at line 20 then FILE5 will be opened or else a file-not-found 

message will be sent just in case the trace flag is set.  

   The trace flag cannot be set if FCOUNT = 0 at line 20 .  

   If FCOUNT = 0 at line 20 and FILE5 is not opened and a file-not-found message 

is not sent then the trace flag is not set.    

 Valid. Note that the third premise guarantees that if FCOUNT = 0 at line 20 then 

the trace flag cannot be set. The conclusion includes the condition that FCOUNT = 

0 at line 20. That alone implies that the trace flag is not set. 

 While most of these examples are easy, Example 2g is difficult enough that it 

takes some careful reasoning to see that it is valid. When arguments are sufficiently 

complex, informal methods often fail. In those cases, formal methods can help.      

  Exercise 5 .  Use informal methods. If the argument is valid, explain why. If it is 
invalid, give a counterexample.

   (a)    Today is Monday

 Tomorrow must be Tuesday.  

   (b)    The error is in subroutine X or subroutine Y.     

  If the error were in subroutine Y then someone would probably have reported 

a problem with subroutine Y. 

 No one has reported a problem with subroutine Y. 

 The problem must be in subroutine X.

   (c)    The rest of the program works perfectly.     

 If there is a problem with the program it must be in the new procedure.

   (d)    If today is Friday then today is payday. Moreover, today is Friday.     

 Hence, today is pay day.

   (e)    If x were 5 at line 2,020 then the program would have crashed.     

 It did crash. 

 So probably x was 5 at line 2,020.

   (f)    If he is telling the truth then I am a monkey’s uncle.  

   (g)    If the program was run yesterday then a run log entry for it would have been made.     

 No run log entry for it was made. 

  Moreover, if the program was not run yesterday then the records in it are not 

current. 

 Hence the records in it are not current.

   (h)    If a run log entry for it was made then the program ran yesterday.     

 No run log entry for it was made. 

  Moreover, if the program was not run yesterday then the records in it are not current. 

 Hence the records in it are not current.   
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  15.2.3.2 More Formal Methods 

  The Truth Table Test Applied to an Individual Argument 

 To perform this test you first find the conditional statement that corresponds to the 

argument. Then you do a truth table for that conditional statement and then apply 

the following rules. Unless the argument is very short, it usually helps to abbreviate 

the argument using logical English. Here are the details. 

  The Truth Table Test for Validity of an Individual Argument :

   1.    Determine the logical structure of the corresponding conditional, perhaps 

expressing it in logical English.  

   2.    Do the truth table for the corresponding conditional.  

   3.    Draw the appropriate conclusion:

   (a)    f the conditional is a truth functional tautology then the argument is valid.  

   (b)    If the conditional is a truth functional contradiction then the argument is 

invalid.  

   (c)    If the conditional is truth functionally contingent then the truth table test 

fails and the argument might be valid or it might be invalid, depending on 

details that are not adequately dealt with by the truth table test.         

 For example, to test the argument ‘Since it is raining, it follows that it is raining 

or it is snowing.’ you would construct the conditional statement “If it is raining then 

it is raining or it is snowing” and then do the following truth table, using R to abbreviate 

“It is raining.” and S to abbreviate ‘It is snowing’.        

R S If R then (R or S)

T T T   T

T F T   T

F T T   T

F F T   F

 Since the truth table for the conditional has all Ts in its final column the condi-

tional is a tautology and the corresponding argument is truth functionally valid by 

clause 3.1 of the test. 

  Exercise 6 .  This exercise is about the following argument. 

 If subroutine A had been executed then X would have been zero at line 500. If X 

had been zero at line 500 then subroutine B would not have been executed. But 

subroutine B was executed. Hence, subroutine A was not executed.

   (a)    List the premises and conclusion of this argument.  

   (b)    Using A to represent the claim that subroutine A was executed, X to represent the 

claim that X is zero at line 500, B to represent the claim that subroutine B was 

executed, and using symbols for connectives, express the form of the argument.  

   (c)    Do the truth table test for validity of the argument. What can you conclude 

about it from the test?       
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  The Truth Table Test Applied to an Argument Form 

 Two statements have the same (sentential) form iff the part of their structures that 

can be represented with truth functional connectives and punctuation is the same. 

For example, statements that do not have any truth functional connectives, such as 

“Today is Monday.,” “This program has bugs in it.”, and “All the records in this file 

have been processed.” all have the same sentential form. Such statements are often 

called truth functionally atomic statements because they cannot be broken into 

simpler statements. Similarly, “Today is Tuesday and tomorrow is Friday” has the 

same sentential form as “This program has bugs in it and tomorrow is Monday.” 

Their common form is that of two statements separated by “and.” This is often rep-

resented by saying they have the form “S ∧ T.” Individual statements that share the 

same form are said to be instances of that form. 

 Two arguments are said to have the same (sentential) form just in case their 

premises and conclusions can be matched one to one so that corresponding 

premises and conclusions have the same sentential form. Individual arguments that 

share the same argument form are said to be instances of that argument form. 

  The Truth Table Test for Validity of Argument Forms :

   1.    Express the form of the corresponding conditional as a wff.  

   2.    Do the truth table for the conditional wff.  

   3.    Draw the appropriate conclusion

   (a)    If the conditional form corresponding to an argument form is a truth functional 

tautology than every argument of that form is valid.  

   (b)    If the conditional form corresponding to an argument form is a truth functional 

contradiction then every argument of that form is invalid.  

   (c)    If the conditional form corresponding to an argument form is truth functionally 

contingent then the test fails and some of the arguments of that form are valid 

while others are invalid.         

 For example, all arguments of the following form are valid. 

  P, If P then Q  

 Q 

 The truth table of the corresponding conditional is        

P Q (P ∧ (P → Q)) → Q

T T T  T  T
T F F  F  T
F T F  T  T
F F F  T  T

 Applying the truth table test shows that all arguments of the corresponding form 

are valid. For example

   Today is Friday.  

   If today is Friday then today is payday.   

  Today is payday.    
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 Another valid argument form is:

    If P then Q, If Q then R   

  If P then R    

 The truth table of the corresponding conditional is         

P Q R ((P → Q) ∧ (Q → R)) → (P → R)

T T T T T T T T
T T F T F F T F
T F T F F T T T
T F F F F T T F
F T T T T T T T
F T F T F F T T
F F T T T T T T
F F F T T T T T

 Here again the truth table test shows that all arguments of the corresponding form 

are valid. For example

   If today is Friday then today is payday.  

   If today is payday then I can pay bills tomorrow.   

  If today is Friday then I can pay bills tomorrow.    

 On the other hand, every argument of the form:

    P or not P  (which is always true)  

  P and not P (which is always false)    

 is invalid, although this is so bizarre a form of argument that this fact is not very 

useful. Just for the record, here is the truth table of the corresponding conditional.        

P ((P ∨ ~P) → (P ∧ ~P)

T T F F
F T F F

 Applying the truth table test gives the result that all arguments of the corresponding 

form are invalid. For example,

    (3 ≤ 5) ∨ ∼(3 ≤ 5)   

  (3 < 5) ∧ ∼(3 < 5)    

 Finally, the truth table test fails on arguments of the form:

    P, Q   
  R            

P Q R (P ∧ Q) → R

T T T T T
T T F T F
T F T F T
T F F F T
F T T F T
F T F F T
F F T F T
F F F F T
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 The truth table test indicates that some arguments of this form are valid and some 

are not. For example the argument

   All records in this file have been processed.  

   The Jones record is a record in this file.   

  The Jones record has been processed. 

   is a valid argument of this form, while the argument

   All records in this file have been processed.  

   The Jones record is a record in this file.   

  The moon is made of green cheese. 

   is an invalid argument of this form. 

  Exercise 7 .  Apply the truth table test to each of the following argument forms.

   (a)      ∼(P ∧ Q), R ↔ ∼P, P → ∼R, Q  

 P  

   (b)       ∼(∼P∨ ∼Q), ∼P  

 P → Q  

   (c)      P → ∼(Q ∧ R), ∼P ∨ Q  

 ∼R  

   (d)       ∼P ∨ Q, ∼Q ∨ R  

 ∼R → ∼P  

   (e)      ∼(P ∨ Q), ∼(P ∧ ∼Q)  

 P ↔ Q  

   (f)      P ∨ ∼Q, Q ∨ ∼R, ∼P ∨ Q  

 ∼Q         

  15.2.4 Logical Validity 

 The truth table test fails when applied to many valid arguments. 

 For example, consider the following argument: 

  All men are mortal. Socrates is a man.  

 Socrates is mortal. 

 The truth table test applied to this argument works as follows. The truth functional 

form of the argument is

    P, Q   

  R   

and the corresponding conditional has the form P ∧ Q → R. The truth table for this 

conditional has some Ts and some Fs in its final column, so the conditional is truth 
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functionally contingent. Yet the original argument is clearly valid, as can be seen 

by reasoning about the quantificational structure of the argument. 

 Unfortunately, there is no decision procedure like the truth table test for argu-

ments whose validity or invalidity depends upon predicates and quantifiers, 

although there are decision procedures for special cases such as arguments whose 

predicate symbols are all 1-place predicate symbols. As a result, luck, experience, 

and cleverness must be relied upon to determine logical validity in general. 

 Here is an example of an informal approach to showing validity or invalidity of 

an argument. Here is a specific, but invalid, argument. 

  All martians can fly. Tweety can fly.  

 Tweety is a martian. 

 To see that this is so, consider the following counterexample. Suppose it is true that 

all martians can fly. But Tweety, my pet parakeet, can fly even though it is not a 

martian. Hence we have an example in which the premises are all true but the con-

clusion is false. Hence the argument is not valid. 

  Exercise 8 .  Use an informal approach to showing the validity or invalidity of each 
of the following arguments.

   (a)     All birds are bipeds., Chalky is not a biped . 

 Chalky is not a bird.  

   (b)     All birds are bipeds., The current President is not a bird . 

 The current President is not a biped.  

   (c)     All birds are bipeds., Everything is a biped . 

 Everything is a bird.  

   (d)     All birds are bipeds., Everything is a bird . 

 Everything is a biped.  

   (e)     Tweety is a bird . 

 Everything is a bird.  

   (f)     Tweety is a bird . 

 Something is a bird.  

   (g)     Everything is a bird . 

 My cat is a bird.  

   (h)     Something is a bird . 

 My cat is a bird.     

 Here is an example of a more formal approach to showing validity or invalidity. 

Here is a valid argument form. 

  ∀x(Hx → Mx), Hs  

 Ms 
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 To see why this argument is valid, consider any interpretation, I, in which both 

premises are true. Then Hs is true in I. Moreover, ∀x(Hx → Mx) is true in I. Hence Hx 

→ Mx is true of every element, d, of the domain of I. Since V(s) is an element of the 

domain of I, Hs → Ms is true in I. Hence it is not the case that Hs is true in I and Ms is 

false in I. Hence, if Hs is true in I then Ms is true in I. This same reasoning applies to 

any other interpretation of the conditional. Hence the corresponding argument is valid. 

 Notice that the same reasoning applies to any argument whose form can be rep-

resented by 

  ∀x(Hx → Mx), Hs  

 Ms 

 For example, let Hx be interpreted as “x is human,” Mx as “x is mortal,” and s 

be interpreted as a name for Socrates. Then the argument below is valid. 

  All humans are mortal. Socrates is a man.  

 Socrates is mortal. 

 Here is another example of the same form 

  All martians can fly. Xabfeeg is a martian.  

 Xabfeeg can fly. 

  Exercise 9  .  Determine which of the following argument forms are valid and which 
are not valid. If an argument form is valid explain why it is valid, i.e. explain why 
the corresponding conditional must be true in all of its interpretations. If it is 
invalid, give a counterexample, i.e. give an interpretation in which all the premises 
are true and the conclusion is false.

   (a)    ∀x(Px → Qx), ∼Qa 

 ∼Pa  

   (b)      ∀x(Px → Qx), ∼Pa  

 ∼Qa  

   (c)     ∀x(Px → Qx), ∀xQx  

 ∀xPx  

   (d)     ∀x(Px → Qx), ∀xPx  

 ∀xQx  

   (e)     Pa  

 ∀xPx  

   (f)     Pa  

 ∃xPx  

   (g)     ∀xPx  

 Pa  

   (h)     ∃xPx  

 Pa                



        Chapter 16   
 Rules of Inference       

  The purpose of this Chapter is to describe rules of inference for truth functional 

reasoning. There are rules of inference for quantificational reasoning, but they are 

more complex and will not be discussed here. After studying this material you 

should be able to:

   1.    Describe two important limitations of truth table tests.  

   2.    Explain what a rule of inference is and give examples.  

   3.    Recognize important rules of inference by name.  

   4.    Explain why rules of inference are useful.        

  Outline 

  16.1 Limitations of truth table tests  

  16.2 Rules of inference 

  16.2.1 Formal rules of inference  

  16.2.2 Correct and incorrect rules of inference   

  16.3 Some truth functional rules of inference 

  16.3.1 Examples of correct rules of inference  

  16.3.2 Some properties of rules of inference  

  16.3.3 Examples of incorrect rules of inference (Formal fallacies)    

  16.1 Limitations of Truth Table Tests  

 Truth tables are extremely useful tools for some kinds of critical reasoning, e.g. for 

checking the validity of arguments, the consistency of sets of statements, and so on. 

But truth tables also have serious limitations. For example, as the number of state-

ments being analyzed increases the resulting tables become very large very quickly. 

For example, to show that the argument

  
P Q, Q R, R S, S T, T U, U

P

→ → → → → ∼
∼
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is valid by use of a truth table would require a table with sixty four rows. Using the 

rules of inference described below, five easy applications of the rule called  modus 
tollens  would do the job. 

 Another serious limitation of truth tables is that they are not of much use in con-

structive reasoning, i.e. if you want to create a new valid argument. On the other hand, 

rules of inference are designed for exactly that task. Consequently, they can be used 

to discover new (hidden) knowledge, as while solving puzzles, testing programs for 

correctness, or debugging programs.  

  16.2 Rules of Inference  

  16.2.1 Formal Rules of Inference 

  Definition 1 .  A  formal rule of inference  is a rule that describes the claim that a 

conclusion of a certain form may validly be inferred from a finite list of premises 

of certain forms. Such rules are often displayed in the following way: 

  P , P , ..., P  

C  
1 2 n

    (list of premise forms separated by commas)

 (conclusion form)

 For example, the claim that from premises of the form P and P → Q, the conclu-

sion Q may validly be inferred would be displayed thusly.

  
P, P Q

Q

→
   

 A specific instance of this rule of inference would be that from the premises “Today 

is Tuesday.” and “If today is Tuesday then the payroll file should be backed up 

today. the conclusion “The payroll file should be backed up today.” may be validly 

inferred.   

  16.2.2 Correct and Incorrect Rules of Inference 

  Definition 2 .  If the claim made by a rule of inference is true then the rule is said to 

be a  correct rule of inference , otherwise it is said to be an  incorrect rule of 
inference . 

 Any valid argument form can be redescribed as a rule of inference. Such rules are 

sometimes said to be valid rules of inference, although it is better to call them correct 

rules of inference. Correct rules of inference never lead you from true premises to 
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false conclusions. That is why they are so useful. If you restrict your reasoning to such 

rules, then your reasoning will be correct, your arguments valid, and, if your premises 

are true, then your arguments will be sound and your conclusions will be true.    

  16.3 Some Truth Functional Rules of Inference  

 Truth functional rules of inference are rules of inference whose correctness can be 

established solely by analysis of the truth functional structure of the sentence forms 

involved. There are also rules of inference involving program instructions. Some of 

these rules will be discussed in Chap. 19 

  16.3.1 Examples of Correct Rules of Inference 

 There are many correct rules of inference and many ways to organize them. In the 

examples below, the rules on the left are called  introduction rules  because in each 

case a connective that was not in the premises is present (introduced) in the 

 conclusion. Each rule has a name, for example, the rule on the left of the first 

row below is called ∧-introduction, the rules on the left of the second row are called 

∨- introduction, and so on. The rules on the right are called  elimination rules  

because in each case one or more connectives that were in the premises is not in the 

conclusion. The rules on the right of the first row are called ∧-elimination, the rule 

on the right of the second row is called ∨-elimination, and so on. 

Introduction rules Elimination rules

P, Q

P Q
-intro.

P Q

P
 

P Q

Q
-elim.

P

P Q
 

P

Q P
-intro.

P Q, P R, 

∧
∧

∧ ∧
∧

∨ ∨
∨

∨ → QQ R

R
-elim.

P
Q Q

P

 -intro.
P

Q Q

P

-elim.

P
Q

P Q

-intro.
P

→
∨

∧ ∧

→

→

~

~

~
~

~
~

→→
→

→ →
↔

↔
↔
→

↔
→

↔

Q, P

Q
-elim.

P Q, Q P

P Q
-intro.

P Q

P Q
 

P Q

Q P
-elim
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 Some other correct rules of inference along with commonly used names for 

them are described below.

  

P, P  Q

Q

→

   
(modus ponens or affirming the antecedent)

  P Q, Q

P

→ ∼
∼

    (modus tollens or denying the consequent)

  
P Q,Q R→ →

→P R
    (hypothetical syllogism or chain argument)

  
P Q, P

Q

∨ ∼
∼

    (disjunctive syllogism)

  P Q,R S P R

Q S

→ → , ∨
∨

    (constructive dilemma)

  
P Q

P P Q)

→
→ ( ∧

    (absorption)

  
P Q

P

∧
    (simplification)

  P Q

Q P

∧
∧

    (∧ is commutative)

  

P Q

Q P

∨
∨    

(∨ is commutative)

  

P Q

Q P

↔
↔    

(↔ is commutative)

  

P

~~ P

~~ P

P    
(double negation intro and elim.)

  

P Q R)

(P Q) P R)

∧ ( ∨
∧ ∨ ( ∧    

(∧ distributes over ∨)

  

P Q R)

(P Q) P R)

∨ ( ∧
∧ ∨ ( ∧    

(∨ distributes over Ù)

  

~ ( )

~

~ ~

~ (

~ ( )

~

~ ~

~ (

P Q

P Q

P Q

P Q)

P Q

P Q

P Q

P Q)

∨
∧

∧
∨

∧
∨

∨
∧

    

(DeMorgan’s laws)
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  Example 1 .  Correct uses of rules of inference  

valid inference rule used

a. From A ∧ (B ∨ C) ∧-elimination
 infer B ∨ C

b. From (A ∨ B) → C, ~C 
modus tollens

 infer ~(A ∨ B)

c. From ~(A ∨ B) ∨-introduction
 infer (~(A ∨ B)) ∨ E

 Note that Example 1b and 1c form a chain of valid argument forms. Taken 

together they show that the argument form 

( ) ,~

(~ ( ))

A B C C

A B E

∨
∨ ∨
→

is valid.   

  16.3.2 Some Properties of Rules of Inference 

 The general rule used above to obtain correct rules of inference is that an argument 

form is valid if and only if the corresponding rule of inference is correct. Some 

additional general principles about rules of inference are:

   1.     The Order of Premises Rule : The premises of a rule of inference can be written 

in any order without affecting the correctness of the rule. For example, the deny-

ing the consequent rule can be written either as

  

P Q Q

P

Q P Q

P
premises in either order)

→ →,~

~

~ ,

~
(or as

    

   2.     The Repetition Rule : Premises and previously derived conclusions can be 

repeated at any later stage of an argument. For example, recall the first argument 

of this chapter.

  

P Q,Q R,R S,S T,T U, U

P

→ → → → → ~

~    

 A sequence of five uses of  modus tollens  and repetition will show that this argu-

ment is valid, without doing a 64 row truth table.

  P → Q, Q → R, R → S, S → T, T → U, ∼U  

  P → Q, Q → R, R → S, S → T, ∼T    modus tollens , repetition 

  P → Q, Q → R, R → S, ∼S    modus tollens , repetition 

  P → Q, Q → R, ∼R    modus tollens , repetition 

  P → Q, ∼Q    modus tollens , repetition 

 ∼P   modus tollens , repetition 
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   3.     The Premise Strengthening Rule : If you have a correct rule of inference then you 

can add any additional premises (above the line) and the result will also be a 

correct rule. Another way to look at this is to say that if conclusion C follows 

validly from a set of premises, S, then C also follows from premises S ∪ {P} 

where P is any statement, i.e. the set of premises of a valid argument can be 

strengthened by adding more premises without affecting the validity of the 

argument.  

   4.     The Conclusion Weakening Rule : If you have a correct rule of inference then you 

can add the disjunction of the conclusion with any statement P and the result will 

also be a correct rule. Another way to look at this is to say that if conclusion C 

follows validly from a set of premises, S, then C ∨ P also follows from premises 

S where P is any statement, i.e. the conclusion of a valid argument can be weak-

ened by disjoining any statement to the conclusion without affecting the validity 

of the argument.  

   5.     The Tautology Rule : Every tautology follows validly from the null (empty) set 

of premises. In diagram form this can be expressed by 

     any tautology
tautology rule( )

 

   6.     The equivalence substitution rules : If two statements are truth functionally 

equivalent then (any instances of) one may be substituted for (any instances of) 

the other in any statement and the result will be truth functionally equivalent to 

the first. In diagrammatic form this could be expresses by 

  

P Q

S P S Q
substitution rule 1,or just sub

↔
↔( ) ( )

( )1
  

where S(P) is any statement and S(Q) is the result of substituting Q for one or 

more instances of P in S. 

  For example, recall that (∼(P ∧ Q)) ↔ ((∼P) ∨ (∼Q)). Consequently, by substitu-

tion of (∼(P ∨ Q)) for ((∼P) ∧ (∼Q)) in (R ∧ ((∼P) ∨ (∼Q))) we know that (R ∧ ((∼P) 

∨ (∼Q))) ↔ (R ∧ (∼(P ∧ Q))). 

 This rule is often combined with the rule 

  

P Q,Q

P

↔
  

to get another substitution rule 

  

P Q,S(P)

S(Q)
substitution rule 2,or just sub

↔
( )2

   

 Continuing the example above, if we somehow knew that a statement (R ∧ ((∼P) 

∨ (∼Q))) was true then since we also know that (∼(P ∧ Q)) ↔ ((∼P) ∨ (∼Q)) we 

could apply rule 2 to conclude that (R ∧ (∼(P ∧ Q))) was also true. 
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 Whichever form of the substitution rule is used, it is important to be clear about 

what is being substituted for what in what statement. Note also that if S(P) has more 

than one instance of P in it, Q may be substituted for just some or all of them. For 

example both 

     
R (~ (~ R),R (P R)

~ (~ R) (P R)

↔ →
→

∨
∨

  (substituting ~(~R) for just one instance of R in 

R → (P ∨ R) using sub1) 

and 

   

R R R P R

R P R

↔ →
→

(~ (~ )), ( )

(~ (~ ) ( ~ (~ ))

∨
∨     

  (substituting ~(~R) for both instances of R in 

R →(P ∨ R) using sub2)   

 

 Exercise 1 .  Identify one correct rule of inference that could be used to justify 

each of the following inferences. If no single correct rule can justify the inference, 

say so.

   (a)    If the file were sorted in ascending order the Adams record would be 

first. Moreover, the file is sorted in ascending order. Hence the Adams 

record is first.  

   (b)    If the file were sorted in ascending order the Adams record would be first. 

Moreover, the Adams record is not first. Hence the file is not sorted in ascending 

order.  

   (c)    Today is Tuesday and it is raining here now. Hence today is Tuesday.  

   (d)    Today is Tuesday or it is raining here now. Today is not Tuesday. Therefore it 

is raining here now.  

   (e)    If x = 5 then y = 7. Also, if a > 0 then b < 0. Moreover, x = 5 or a > 0. 

Consequently, y = 7 or b < 0.  

   (f)    If x = 5 then y = 7. However, ∼(y = 7). Hence, ∼(x = 5).  

   (g)      
( ) ( )

( ) ( )

x y

y x

= ↔
↔ =

3 0

0 3

<
<

    

   (h)    ∼(∼(S ∧ T)). Hence S ∧ T.  

   (i)          
S T Q

S S T Q

→
→

( )

( ( ))

∨
∧ ∨

   (j)      ~ ( ( )) ))S T Q S T Q∧ ∨ ∨ ∼ (∼ ( ∧ ( ∨     

   (k)      
S (R Q ),(R S) T S

(R S) (T (R Q

↔ ↔
↔
∧ (∼ ) ∧ ∨

∧ ∨ ∧ (∼ ))
( )

        

  Exercise 2 .  First translate the following chain argument into symbolic form. Then 

identify the rules of inference used in the argument. Clearly identify which premises 

and conclusions are used for each use of a rule of inference. 
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 Argument: If the file is sorted then it is in ascending order or descending order. 

Moreover the file is sorted. Hence it is in ascending order or descending order. 

However, it is not in ascending order. Hence it must be in descending order.  

  Exercise 3 .  Given the following three premises, apply valid rules of inference to 

them to arrive at four conclusions that differ from the premises and from the 

example given below. For each of the four inferences you may use any of the three 

given premises or any of the conclusions you have from previous inferences. For 

each inference, tell what inference you are making and give a name of rule you are 

applying.

  Premises: A C), D, ~~ D∧ (Β∨ Β ∼→      

  16.3.3  Examples of Incorrect Rules of Inference 
(Formal Fallacies) 

 Finally, a rule of inference could be incorrect. To say that a rule of inference is 

incorrect is to say that it could lead from true premises to a false conclusion. 

Incorrect rules of inference correspond to invalid patterns of reasoning. Some of 

them are so common that they have Latin names. They are often called formal 

 fallacies. A few of them are listed below.

  
P Q,Q

P

→
    (affirming the consequent)

  
P Q,~ P

~ Q

→
    (denying the antecedent)

  
P Q

Q P

→
→

    (converting a consequent)

  
P Q,P

~ Q

∨
    (improper disjunctive syllogism)

  Exercise 4 .  For each of the incorrect rules above, give a counterexample that shows 

that the rule is incorrect.         



        Chapter 17   
 Proof       

  The last chapter described some truth functional rules of inference. The purpose of 

this Chapter is to show how to use such rules to construct proofs. After studying 

this material you should be able to:

   1.    Construct valid arguments using rules of inference.  

   2.    Explain several different senses of the term ‘proof’.  

   3.    Explain the difference between and tradeoffs between formal and informal proof 

methods.  

   4.    Apply the proof methods explained here to proving the truth functional validity 

of argument forms and proving that statement forms are tautologies  

   5.    Describe and use direct, conditional, and indirect proof strategies.  

   6.    Be able to construct simple arguments using rules of inference and facts from 

specific subjects such as mathematics.        

  Outline 

  17.1 Kinds of proof 

  17.1.1 Different senses of proof  

  17.1.2 Formal vs. informal proofs   

  17.2 Two ways of organizing proofs  

  17.3 Three proof strategies 

  17.3.1 Direct proof  

  17.3.2 Conditional proof  

  17.3.3 Indirect proof   

  17.4 Applying logic to specifi c subjects 

  17.4.1 Using instances of general forms  

  17.4.2 Adding nonlogical justifications    
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  17.1 Kinds of Proof  

  17.1.1 Different Senses of Proof 

 The word “proof ” is used in many different ways. In the broadest sense, a proof is 

just an argument intended to explain why some statement is true. The idea is that if 

you already believe the premises of the argument and you see that the conclusion 

follows logically from the premises, and if you are rational, then you should be 

persuaded that the conclusion is also true. 

 Many years ago a friend of mine was assigned to teach a differential equations 

course to a class of engineering students. The students had heard horror stories 

about the difficulty of differential equations courses, especially those that included 

‘proofs’ of the theorems. On the first day of the course my friend announced to the 

class that they were not going to have to do proofs of the theorems but that they 

were going to have to explain why the theorems were true. The students breathed a 

sigh of relief, the course proceeded smoothly, and my friend only explained his 

“noble lie” to them at the end of the course. The moral of the story is that a rose by 

any other name would not smell as sweet. 

 The principle concern of logic is not the truth or falsity of premises and conclusions 

but the validity of arguments. From a logical point of view a proof is an argument or 

chain of arguments intended to demonstrate that the final conclusion of the sequence 

follows necessarily from the original premises. In this sense a proof may be correct or 

incorrect, depending upon whether its component arguments are valid or invalid. 

 In a stricter sense, a sequence of arguments is not really a proof unless all its 

component arguments are valid. Unless the context indicates otherwise this is the 

sense of the word which will be used in this book. 

 In some contexts an even stricter sense of proof is used in which all the compo-

nent arguments have to be valid and the premises also have to be true, i.e. all the 

component arguments have to be sound. In this sense what a proof proves is that its 

conclusion is true. 

 Finally, for something to be a proof it is often required that each statement of the 

proof be associated with an explicit justification or reason. This is the sort of proof 

you may recall from logic or mathematics courses.  

  17.1.2 Formal vs Informal Proofs 

 At one extreme, a purely formal proof is a proof whose validity can be determined 

by examining the forms of the component statements, without regard to their meanings. 

At the other extreme, a purely informal proof is a proof whose validity can be 

determined by considering facts the author of the argument believes are not in question, 

e.g. “obvious” facts and the meanings of the component statements, without regard 

to their form. Most proofs found outside of logic books are informal or semiformal, 

i.e. partly formal and partly informal. 
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 Formal proofs tend to be long, very detailed, and boring. On the good side, they 

make everything very explicit and errors in them are usually easy to check. 

Computer programs can be written to check the correctness of formal proofs. 

Informal proofs tend to be shorter, much less detailed, and more interesting. They 

can also be difficult to understand. It is far easier to be fooled by an informal 

argument than by a formal one, and it is difficult or impossible to write computer 

programs to check their correctness. 

 Here is a joke that illustrates the point about informal proofs sometimes being 

hard to understand. A mathematics professor was doing an informal proof on the 

blackboard. He started on one side of the room and filled several panels of black-

board before he wrote “Obviously Y < 0” on the board. Whereupon he stepped 

back, stared at the board for a while then paced back and forth for several minutes, 

all the time staring at the various steps of the proof. Then he left the room without 

saying a word. The students waited for a very long time. Finally the Professor 

rushed back into the room and proudly exclaimed “Yes, it is obvious!” 

 Context determines the level of formality that is appropriate for a proof. 

Considerable formality is appropriate in the context of learning to reason correctly. 

Formal reasoning often seems like walking using baby steps. However, formality 

makes reasoning clearer and less subject to misunderstanding. Formality can play 

the same role in learning to use logic that training wheels can play in learning to 

ride a bicycle. Formality helps you learn the formal rules of correct reasoning. Once 

you know the rules then you are in a better position to take informal shortcuts.   

  17.2 Two Ways of Organizing Proofs  

 Recall that for every argument there is a corresponding conditional statement. 

Moreover, an argument is truth functionally valid just in case the corresponding 

conditional is a tautology. The two ways of organizing proofs described below 

correspond to analyzing the validity of arguments expressed as arguments versus 

analyzing the corresponding conditional to determine that it is a tautology. The 

general form of a proof organized the first way is 

 Line  Assumes  Statement  Justification 

 1.  1  P 
1
   Premise 

 2.  2  P 
2
   Premise 

 .  . 

 .  . 

 n.  n  P n  / C  Premise / conclusion 

 n + 1  ?,…,?  Statement  Justification 
 n + 2  ?,…,?  Statement  Justification 

 .  . 

 .  . 

 N  ?,…,?  C  Justification (for the conclusion, C) 
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 Each line, often called a step, of such a proof has four columns. Column 1 is 

simply a line number. Column 2 is a list of the assumptions the statement in that 

row depends upon. Column 3 is a statement of the proof. Column 4 is a justification 

for asserting that statement. In formal proofs of this kind, justifications are premises 

of the argument or they refer to formal rules of inference or formalized expressions 

of the definitions of terms or facts assumed about a specific area of application. 

Justifications in informal proofs do the same job but are expressed informally. This 

general form may be supplemented in various ways to make its purpose clearer. 

Here is an example of such a proof. 

  Example 1 .  A proof of validity of an argument form 

 The argument form below is written horizontally with “/” between the premises 

and the conclusion in order to save space on the page.  

  P → Q, (~R) → (~Q), P / R   

 One (formal) proof of R from these three premises is the following.   The num-

bers in the right hand column are the line numbers of the specific previous lines to 

which the rule of inference referred to in that line is applied in order to deduce the 

statement to its left.  

 Line  Assumes  Statement  Justification 

 1.  1  P → Q  Premise 

 2.  2  (∼ R) → (∼ Q)  Premise 

 3.  3  P / R  Premise / conclusion 

 4.  1,3  Q  → elim. 1,3 

 5.  1,3  ∼ (∼ Q)  ∼∼ intro. 4 

 6.  1,2,3  ∼ (∼R)  Modus tollens 2,5 

 7.  1,2,3  R  ∼∼ elim. 6 

 A second way to organize a proof starts with the corresponding conditional. The 

general form is 

 Theorem: The statement to be proved, e.g. (P 
1
  ∧ P 

2
  ∧ …P 

n
 ) → C  

  Proof  

 Line  Assumes  Statement  Justification 

 1.  ?,…?  Statement 1  Justification 

 2.  ?,…?  Statement 2  Justification 

 .  . 

 .  . 

 N.  (blank)  Statement to be proved  Justification 

 e.g. (P 
1
  ∧ P 

2
  ∧ … P 

n
 ) → C 
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 Since the statement to be proved is not an argument it has no premises. 

Consequently premises are not available as justifications. However, all the truths of 

logic (e.g. tautologies), the rules of inference, definitions, and previously proved 

statements in the subject are available. Note that the last line under “assumes” is blank 

because at this point all assumptions have been discharged. Also the last statement in 

the proof is the theorem itself. Typically the antecedent is assumed in preparation for 

a conditional proof. Here is the proof of Example 1. reorganized this way.  

  Example 2 .  Proof from Example 1 reorganized 

 Theorem: (((P → Q) ∧ (∼R → ∼Q)) ∧ P) → R  

  Proof  :

 Line  Assumes  Statement  Justification 

  1.  1  ((P → Q) ∧ (∼R → ∼Q)) ∧ P  Assume for CP 

  2.  1  P  ∧ elim. 1 

  3.  1  (P → Q) ∧ (∼R → ∼Q)  ∧ elim. 1 

  4.  1  ∼R → ∼Q  ∧ elim. 3 

  5.  1  P → Q  ∧ elim. 3 

  6.  1  Q  → elim. 2, 5 

  7.  1  ∼∼Q  ∼∼ intro. 6 

  8.  1  ∼∼R  modus tollens 4, 7 

  9.  1  R  ∼∼ elim. 8 

 10.  (((P → Q) ∧ (∼R → ∼Q)) ∧ P) → R  → intro. 1, 9 

 While the second form is somewhat longer, it is widely used, so it is a good idea 

to be familiar with it.   

  17.3 Three Proof Strategies  

 There are many strategies for organizing the arguments that constitute a proof. 

Three of the most common are described below.   The examples in this section will 

be about proving the validity of argument forms. In the next chapter, proofs about 

nonlogical issues will be discussed. 

  17.3.1 Direct Proof 

 A direct proof starts with premises and forges ahead applying one rule of inference 

after another until the conclusion is reached. It does not involve making any 

temporary “assumptions” as do conditional and indirect proofs. Example 1 above 

uses a direct proof strategy. 
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  Example 1 Repeated   (direct proof of validity of an argument form)  

 1.  1  P → Q  Premise 

 2.  2  (∼ R) → (∼ Q)  Premise 

 3.  3  P / R  Premise / conclusion 

 4.  1,3  Q  → elim. 1,3 

 5.  1,3  ∼ (∼ Q)  ∼∼ intro. 4 

 6.  1,2,3  ∼ (∼R)  modus tollens 2,5 

 7.  1,2,3  R  ∼∼ elim. 6 

 In general there are infinitely many other proofs that would prove the same 

thing, although most of them would be longer than this one. 

 The proof given shows that all arguments of its form are valid. For example, if 

P is replaced by “Today is Tuesday”, Q is replaced by “We have a class today”, and 

R is replaced by “It is raining” then the fact that the argument form is valid tells us 

that the following argument is valid.

   If today is Tuesday then we have a class today.  

  If it is not raining then we do not have a class today.  

   Today is Tuesday.   

  Therefore it is raining.    

 The proof above shows equally that the following argument is valid, where P is 

replaced by “x > 0”, Q is replaced by “y = 1”, and R is replaced by “z = 5”.

   (x > 0) → (y = 1)  

  (∼(z = 5)) → ∼(y = 1)  

   x  ≥  0   

  z = 5     

  Exercise 1 .  Fill in columns 2 and 4 for the following (formal) proof of the 
correctness of the argument form  

  A → (B ∧ C), ∼C / ∼A    

  Proof  :

 1.  A → (B ∧ 

C) 

 2.  ∼C / ∼A 

 3.  (∼B) ∨ (∼C) 

 4.  ∼(B ∧ C) 

 5.  ∼A 

  Exercise 2 .  If A is replaced by “Today is Tuesday”, B is replaced by “We have a 
class today”, and C is replaced by “It is raining” then what specific argument does 
the proof of Exercise 1 show to be valid?  
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  Exercise 3 .  If A is replaced by “x > 0”, B is replaced by “y = 1”, and C is replaced 
by “z = 5” then what specific argument does the proof of Exercise 1 show to be valid?   

  17.3.2 Conditional Proof 

 The rule for → introduction is also called the rule of conditional proof. The idea 

behind the rule is that if, by assuming P, you can validly infer Q then, without 

assuming P, you may validly infer P → Q. This form of proof is very useful if the 

conclusion of the argument is a statement of conditional form. 

  Example 3 .  A conditional proof  

 1.  1  (A ∨ B) → C  premise 

 2.  2  (A ∨ B) → D  premise 

 / (A ∨ B) → (C ∧ D)  / conclusion 

 3.  3  A ∨ B  assume (for conditional proof, CP) 

 4.  1,3  C  → elim. 1,3 

 5.  2,3  D  → elim. 2,3 

 6.  1,2,3  C ∧ D  ∧ intro. 4,5 

 7.  1,2  (A ∨ B) → (C ∧ D)  → intro. 3,6 

 (discharges assumption 3) 

 The conditional proof strategy is especially useful for proving conclusions 

which are themselves of conditional form. The idea is that you get to introduce the 

antecedent of the conclusion as an additional temporary assumption, derive the 

consequent of the conditional based on that assumption, then conclude the conditional 

itself. Note the use of a temporary assumption starting at line 3. At line 7 the 

assumption in 3 is said to be discharged. 

 Here is a proof that the corresponding conditional is a tautology. 

 Theorem: (((A ∨ B) → C) ∧ ((A ∨ B) → D)) → ((A ∨ B) → (C ∧ D))  

  Proof  :

 1.  1  ((A ∨ B) → C) ∧ ((A ∨ B) → D)  assume for CP 

 2.  1  (A ∨ B) → C  ∧ elim. 1 

 3.  1  (A ∨ B) → D  ∧ elim. 1 

 4.  4  A ∨ B  assume (for CP) 

 5.  1,4  C  → elim. 2,4 

 6.  1,4  D  → elim. 3, 4 

 7.  1,4  C ∧ D  ∧ intro. 5, 6 

 8.  1  (A ∨ B) → (C ∧ D)  → intro. 4, 7 

 9.  (((A ∨ B) → C) ∧ ((A ∨ B) → D)) → 

 ((A ∨ B) → (C ∧ D))  → intro. 1, 8 
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  Exercise 4 .  Use conditional proof to prove the following argument forms are valid. 
Then rewrite to prove that the corresponding conditional is a tautology. Hint, in some 
cases you may have to use the rule of conditional proof more than once in a single 
proof.

   a.    A → C, B → D / (A ∧ B) → (C ∧D)  

   b.    A → B, ∼C → ∼A / A → (B ∧ C)  

   c.    A → (B → C) / (A ∧ B) → C       

  17.3.3 Indirect Proof 

 The rules for ∼ introduction and ∼ elimination are the basis for what are called 

indirect proofs (or proofs by contradiction or proofs by reduction to absurdity). 

The contradiction or absurdity involved is “Q and not Q”. The strategy for using 

∼ elimination to prove that P is true is to consider what would be the case if P 

were false, i.e. if ∼P were true, and then derive a contradiction from this hypothesis, 

blame the contradiction on the hypothesis, and conclude that P must after all be 

true. Similarly the strategy for using ∼ introduction to prove that ∼P is true is to 

consider what would be the case if ∼P were false, i.e. if P were true, derive a 

contradiction from that hypothesis, blame the contradiction on the hypothesis, 

and conclude that ∼P is true after all. 

  Example 4 .  An indirect proof of validity  

 1.  1  ∼P → Q ∧ R  Premise 

 2.  2  ∼R / P  Premise / conclusion 

 3.  3  ∼P  assume (for IP) 

 4.  1,3  Q ∧ R  → elim. 1,3 (or MP 1,3) 

 5.  1,3  R  ∧ elim. 4 

 6.  1,2,3  R ∧ ∼R  ∧ intro. 5,2 (a contradiction. Blame on 3) 

 7.  1,2  P  ∼ elim. 3,6 (assumption in 3 discharged) 

 Here again note the use of a temporary assumption. At line 7 the assumption at 

line 3 is denied, and it is said to be discharged, in this case by use of ∼ 

elimination. 

 Here is a proof that the corresponding conditional is a tautology. 

 Theorem: ((∼P → Q ∧ R) ∧ ∼R) → P  

  Proof  :

 1.  1  (∼P → Q ∧ R) ∧ ∼R  assume for CP 

 2.  1  ∼R  ∧ elim. 1 

 3.  3  ∼P  assume (for IP) 
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 4.  1,3  Q ∧ R  → elim. 1,3 (or MP 1,3) 

 5.  1,3  R  ∧ elim. 4 

 6.  1,3  R ∧ ∼R  ∧ intro. 5,2 (a contradiction) 

 7.  1  P  ∼ elim. 3,6 (assumption discharged) 

 8.  ((∼P → Q ∧ R) ∧ ∼R) → P  → intro. 1, 7 

 Any theorem can be proved in a variety of ways. Here, for example, is a direct 

proof of validity of the argument form of Example 4.  

  Example 5 .  Shows that indirect proof is not the only way the theorem of Example 

4 can be proved  

 1.  1  ∼P → Q ∧ R  Premise 

 2.  2  ∼R / P  premise / conclusion 

 3.  2  ∼Q ∨ ∼R  ∨ intro. 2 

 4.  2  ∼(Q ∧ R)  de Morgan 2 

 5.  1,2  ∼(∼P)  modus tollens 1,4 

 6.  1,2  P  ∼∼ elimination 5 

      Example 6 .  Another example of indirect proof  

 1.  1  (R ∨ Q) → P  Premise 

 2.  2  P → (S ∧ T)  Premise 

 3.  3  (∼S) ∨ (∼T) / ∼(R ∨ Q)  premise / conclusion 

 4.  4  (R ∨ Q)  assume (for IP) 

 5.  1,4  P  → elim. 1,4 

 6.  1,2,4  S ∧ T  → elim. 2,5 

 7.  3  ∼(S ∧ T)  de Morgan 3 

 8.  1,2,3,4  (S ∧ T) ∧ ∼(S ∧ T)  ∧ intro. 6, 7 

 11.  1,2,3  ∼(R ∨ Q)  ∼ intro. 4, 8 

  Exercise 5 .  Use the indirect proof strategy to prove the validity of each of the 

following argument forms. Do not also prove the corresponding conditional is a 

tautology.

   a.    P ∨ Q, P ∨ ∼Q / P  

   b.    P → (Q ∧ R), R → (S ∧ T), (∼Q) ∨ (∼T) / ∼P  

   c.    (S ∧ T) ∨ Q, (S ∧ T) ∨ R, R → ∼Q / (S ∧ T)  

   d.    P → Q, ∼R → ∼Q, P / R      

  Exercise 6 .  For each of the following arguments, either construct a formal proof of 

it or show a counterexample to it. Note: a counterexample to an allegedly valid 

argument form could be given by specifying an assignment of truth values of the 

elementary statements involved which made all the premises true and the conclusion 

false. A counterexample to an allegedly valid argument form could also be given 

by showing an instance of that form with obviously true premises and a false 

conclusion. In your proofs you can use any mixture of direct, conditional, and 
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indirect strategies. Some may require more than one. Do not use “tautology” as a 

justification for any line in a proof.

   a.    P → Q, Q → R, R → S, S → T, T → U, ∼U / ∼P  

   b.    ((P → Q) → R) / (P → (Q → R))  

   c.    (P → (Q → R)) / ((P → Q) → R)  

   d.    (P → (Q → R)) / ((P ∧ Q) → R)  

   e.    ((P ∧ Q) → R) / (P → (Q → R))  

   f.    ((P → R) / (P ∨ Q) → R  

   g.    ((P → R) / (P ∧ Q) → R      

  Exercise 7 .  For each of the following alleged theorems of logic (tautologies), either 

construct a formal proof of it or show a counterexample to it. Note: a counterexample 

to an alleged tautology could either be an assignment of truth values which was not 

all ts in its final column or an instance of the statement form which is false. In your 

proofs you can use any mixture of direct, conditional, and indirect strategies. Some 

may require more than one. Do not use “tautology” as a justification for any line in a 

proof.

   a.    ((P ∨ Q) → R) → ((P → R) ∨ (Q → R))  

   b.    ((P ∧ Q) → R) → ((P → R) ∧ (Q → R)  

   c.    ((P → R) ∧ (Q → R) → ((P ∧ Q) → R)  

   d.    ∼(P ∧ Q) ↔ (∼P ∧ ∼Q)  

   e.    ∼(P ∨ Q) ↔ (∼P ∧ ∼Q)  

   f.    ((P → R) ∧ (Q → ∼R)) → ∼(P ∧ Q)  

   g.    ((P ∧ Q) ∨ (P ∧ ∼Q))        

  17.4 Applying Logic to Specific Subjects  

 Rules of inference can be used in aid of reasoning about specific subjects in two 

ways, with and without allowing nonlogical information about the specific subjects 

as justifications in the proofs. 

  17.4.1 Using Instances Of General Forms 

 Recall that truth tables can be done for individual statements and arguments as well 

as for statement and argument forms. Similarly, when the sentence letters in 

abstract proofs of the validity of argument forms are replaced by specific statements 

then the result is a proof of the validity of an argument about a specific subject. 

Consider the following examples. 
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  Example 7 .  Recall Example 1.  

 1.  1  P → Q  Premise 

 2.  2  (∼ R) → (∼ Q)  Premise 

 3.  3  P / R  premise / conclusion 

 4.  1,3  Q  → elim. 1,3 

 5.  1,3  ∼ (∼ Q)  ∼∼ intro. 4 

 6.  1,2,3  ∼ (∼R)  modus tollens 2,5 

 7.  1,2,3  R  ∼∼ elim. 6 

 Consider what happens to this proof if x > 0, y = 1, and z = 5 are used in place 

of P, Q, and R. The result is  

 1.  1  x > 0 → y = 1  Premise 

 2.  2  (∼ z = 5) → > (∼ y = 1)  Premise 

 3.  3  x ≥ 0 / z = 5  premise / conclusion 

 4.  1,3  y = 1  → elim. 1,3 

 5.  1,3  ∼ (∼ y = 1)  ∼∼ introduction 4 

 6.  1,2,3  ∼ (∼z = 5)  → elim. 2,5 

 7.  1,2,3  z = 5  ∼∼ elimination 6 

 This particular argument is about numbers, but the justifications used do not 

refer to any facts about numbers, they refer entirely to facts about logic. The specific 

proof above is called an instance of the more general proof. Any general proof of 

the validity of an argument form can be instantiated in infinitely many specific 

ways, giving rise to infinitely many specific applications.  

  Exercise 8 .  In each of the following, write the instance of the general proof that 

results if P is replaced by “Today is Tuesday”, Q is replaced by “We have a meeting 

today”, R is replaced by “It is raining”, S is replaced by “It is snowing”, and T is 

replaced by “Today is Thursday”.

   a.    The proof in Example 5.  

   b.    The proof in Example 6.  

   c.    The proof in Example 7.  

   d.    The proof in Example 8.       

  17.4.2 Adding Nonlogical Justifications 

 When constructing proofs about a particular subject the previously established facts 

peculiar to that subject can be used as justifications for lines of the proof. Of course 

if a proof uses justifications that are peculiar to a particular subject then what is 

proved is not completely general, rather it is true of that particular subject. 
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  Example 8 .  Proof of a theorem of arithmetic  

 1.  1  (x = 0) → (y = 1)  Premise 

 2.  2  ∼(y = 1) / (x < 0) ∨ (x > 0)  Premise / conclusion 

 3.  1,2  ∼(x = 0)  m.t. 1,2 

 4.  (x = 0) ∨ ((x < 0) ∨ (x > 0))  Arithmetic 

 5.  1,2  ((x < 0) ∨ (x > 0))  d. syll 3,4 

 What is new here is the use of “arithmetic” to justify line 4. It is not a fact about 

logic that any number x is less than zero, equal to zero, or greater than zero. This 

is a fact of arithmetic. The proof shows something about arithmetic as well as 

something about logic. Since logic is assumed in all other subjects, this proof would 

be said to be about arithmetic. 

 Recall that logic is completely gen eral. Logic alone will not tell you anything 

specific about a subject. For example, logic alone guarantees that either it is rain-

ing or it is not raining, but it does not determine which. However, if some facts 

about a subject are already known then logic can help discover other (previously 

unknown) facts about that subject. For example, if it is known that it is raining 

and that if it is raining then the picnic is cancelled then logic will guarantee that 

the picnic is cancelled. 

 Moreover, most interesting subjects are not just collections of isolated 

facts. Usually some of the facts of a subject are more general and more fun-

damental than others. In the sciences the most general facts are called laws of 

nature, e.g. laws of physics, chemistry, biology, etc. In our legal system we 

have constitutional laws with which other lesser laws are not supposed to 

conflict. In mathematics we have axioms of geometry, arithmetic, algebra, 

topology, etc. 

 When logic is applied to a particular subject, such as arithmetic or computing, 

less emphasis is placed on determining which arguments are valid and more 

emphasis is placed on determining which statements about the subject are true. 

Another way to put this is to say that there is a shift from concern about validity to 

concern about soundness. Corresponding to this shift there is a slight change in the 

way proofs are usually presented. 

 When a proof of a statement within a particular subject is attempted, all the 

previously established statements of that subject are available as justifications for 

the lines of the proof. In addition, definitions are allowed as justifications. In 

some contexts reports of observations or even appeals to authority are allowed. 

After a proof is successfully completed, the proven statement joins the ranks of 

previously established statements and it is available the next time a proof of some 

other statement is attempted. 

 Statements that are proved to be consequences of the basic statements (laws, 

axioms, principles, and definitions) of a highly organized subject are often called 

theorems of that subject, e.g. theorems of arithmetic, geometry, or computer science. 

In other cases statements for which proofs are offered are not called theorems. For 

example, while proofs are often used in investigating crimes, there are no theorems 
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of criminology. Although there is some variation in how proofs are presented, they 

are often organized as in Example 9 below. 

 Recall that for every argument there is a corresponding conditional statement. 

Consequently all of the proofs previously given that show that some argument is 

valid can be turned into theorems about their subject matter. For example the the-

orem of arithmetic and the proof of it that correspond to the argument of Example 

9 is given below.  

  Example 9 .  Conditional corresponding to Example 9 

 Theorem: (((x = 0) → (y = 1)) ∧ ∼(y = 1)) → (x < 0) ∨ (x > 0)  

  Proof  :

 1.  1  (((x = 0) → (y = 1)) ∧ ∼(y = 1))  Assume (for CP) 

 2.  1  ((x = 0) → (y = 1))  ∧ elim. 1 

 3.  1  ~(y = 1)  ∧ elim. 1 

 4.  1  ~(x = 0)  → elim. 2,3 

 5.  1  (x = 0) ∨ ((x < 0) ∨ (x > 0))  arithmetic 

 6.  1  ((x < 0) · (x > 0))  d syll 5,4 

 7.  (((x = 0) → (y = 1)) ∧ ∼(y = 1)) → (x < 0) ∨ (x > 0)  → intro. 1,6 

  Exercise 9 .  Using the style of Example 10, construct proofs of the following theorems. 

Suggestion: Use the fact that (x = 0) ∨ ((x < 0) ∨ (x > 0)) and (y = 0) ∨ ((y < 0) ∨ (y > 

0)) and (z = 5) ∨ ((z < 5) ∨ (z > 5)).

   a.    (x = 0 → z = 5) ∧ ∼(z < 5 ∨ z > 5) → ∼ x = 0.  

   b.    (((x = 0 ∨ y = 1) → z = 5) ∧ ∼ ( x < 0 ∨ x > 0)) → z = 5  

   c.    (((y = 1 → (z = 5 ∧ x = 0)) ∧ ∼ z = 5) → ∼ y = 1  

   d.    ((y = 1 → (z = 5 ∨ x = 0)) ∧ y = 1 ∧ ∼ z = 5) → x = 0           



        Chapter 18   
 Algorithmic Unsolvability Proofs       

  This short chapter describes what it means for a problem to be algorithmically 

unsolvable and gives a proof that the halting problem is algorithmically unsolvable. 

After studying this material you should be able to:

   1.    Explain what it means for a problem to be algorithmically unsolvable.  

   2.    Describe the halting problem and explain the proof of its unsolvability.  

   3.    Describe the program equivalence problem and the verification problem and 

explain what their algorithmic unsolvability means.        

  Outline 

  18.1 Algorithmic solvability and unsolvability  

  18.2 The halting problem is algorithmically unsolvable  

  18.3 Other algorithmically unsolvable problems   

  18.1 Algorithmic Solvability and Unsolvability  

 Recall that the term “program” and “algorithm” are often used as synonyms and 

that where a distinction between them is made, an algorithm is a plan for a program. 

Programs are written to solve certain kinds of problems. The problems which can 

be solved by means of computer programs, involve transforming information that 

can be represented in digital form. More precisely, a functional problem specifica-

tion is an ordered pair, <D, S>, where D represents the set of data to be transformed, 

called the domain of the problem, and S represents the condition that anything must 

satisfy in order to solve the problem. S must represent a function, i.e. for each x 

there must be at most one y such that S(x, y) is true. 

  Example 1 .  Some algorithmic problem specifications
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   (a)    The problem of finding the absolute value of any real number.

   D = the set of real numbers.  

  S(x, y) is true iff x is a real number and y is the absolute value of x.     

   (b)    The problem of finding the smaller of any pair of real numbers.

   D = the set of pairs of real numbers.  

  S(x, y) is true iff x is a pair of real numbers and y is the smaller of the 

 elements of x.     

   (c)    The problem of finding the sum of any nonempty finite sequence of numbers.

   D = the set of all finite sequences of numbers.  

  S(x, y) is true iff x is a sequence of real numbers and y is the sum of 

the elements of x.     

   (d)    The problem of counting the number of sentences in a document which contain 

 a specified word.

   D = the set of all pairs, <d, w> where d is a document and w is a word 

whose instances in d are to be counted.  

  S(x, y) is true iff x is a pair <d, w> in D and y is the number of instances 

of w in d.     

   (e)    The problem of finding the Nth even prime number.

   D = the set of all positive integers.  

  S(N, y) is true iff N is a positive integer and y is the Nth even prime 

number.     

   (f)    The problem of determining whether there is an Nth even prime number.

   D = the set of all positive integers.  

  S(N, y) is true iff x is a positive integer and ((there is an Nth even prime 

and y = true (or “Yes”)) or (there is no Nth even prime and y = false (or 

“No”))).        

 Specifications for a program that solves a problem, <D, S>, can be expressed by 

preconditions and postconditions, <Pre, Post>, that are related to the problem speci-

fications as follows:

  X ∈ D → Pre and

S(x,y) ↔ Pre(x) ∧ Post(x,y).   

 The elements of D are often called the “valid” inputs for any program that is 

supposed to solve the problem. Other inputs may be allowed, but they are not 

“valid” for this problem. This of course is an abuse of the logical term “valid.” The 

desired outputs from such an program are {y| ∃xPre(x) ∧ Post(x, y)}.  

  Definition 1 .  An program, P, is said to be  partially correct  with respect to a problem 

just in case if P is run with input from the domain of the problem and P halts, then 

the output of the program for that input is the solution of the problem for that domain 

element. 

 A partially correct program never gives the wrong answer, but in some cases it 

may give no answer at all. For example, the following program is partially correct 

with respect to the problem of determining the absolute value of any real number.



18.1 Algorithmic Solvability and Unsolvability  205

   algorithm partialAbsoluteValue (N)  

  # Precondition: N is a number.  

  # Postcondition: Returns the absolute value of N.

   If (N > = 0) then

   abs ← N     

  Else

   loop forever     

  Endif  

  Return abs     

   Endalgorithm     

  Definition 2 .  An program, P, is said to be  totally correct  with respect to a problem 

iff P halts when given any element in the domain of the problem as input and its 

output is the solution of the problem for that element of its domain. 

 One reason for distinguishing between partial and total correctness is that proofs 

of total correctness are often divided into two parts. In one part it is shown that, if 

P halts with input from the domain of the problem then it gives the correct answer. 

In the other part it is shown that if P is run with input from the domain of the prob-

lem then it must halt. Total correctness = partial correctness + always halts. 

 Note that if P is totally correct with respect to a problem then P halts for every 

input from the domain of the problem and its output must be correct in each case. 

There are no restrictions on what P can do with input that is not in the domain of 

the problem.  

  Exercise 1 .  Suppose a program does nothing but go into an infinite loop no matter 

what input it is given. For what problems, if any, is a partially correct?  

  Exercise 2 .  Suppose a program does nothing but go into an infinite loop no matter 

what input it is given. For what problems, if any, is it totally correct?  

  Exercise 3 .  Show by example that a program may be totally correct with respect to one 

problem and not totally correct with respect to another. You don’t need to write a 

program, just describe what such a program and problems would be in specific terms.  

  Exercise 4 .  Show by example that a program may be partially correct with respect 

to one problem and totally correct with respect to a different problem. You don’t 

need to write a program, just describe what such a program and problems would be 

in specific terms.  

  Definition 3 .   A program solves a problem  iff it is totally correct with respect to that 

problem.  

  Definition 4 .  A decision problem is a problem that asks for a “Yes” or “no” (true 

or false) answer to a question of the form “Does this element of the domain have 

some property?” If some specific input has the property in question then the answer 
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to the problem in that case is “Yes” (or true) and if not then the answer is “No” (or 

false). 

 A program that solves a decision problem halts with output “Yes” for inputs 

from the problem domain that have the property and halts with output “No” for 

inputs from the problem domain that do not have the property. For example, the 

problem of determining whether a positive integer is a prime number is a decision 

problem – “yes” N is prime or “No” N is not prime.  

  Definition 5 .   A problem is algorithmically solvable  iff there is a program which 

solves it. In particular,  a decision problem is algorithmically solvable   iff there is 

a program that halts with output “Yes” for every input in the domain of the 

problem which has the property specified by the problem and halts with output 

“No” for every input in the domain of the problem which does not have the 

property specified by the problem. 

 It comes as a surprise to many people that there are quite reasonable sounding 

problems of the sort you might think could be solved by means of a computer pro-

gram which are algorithmically unsolvable. This is a very strong claim, it means 

that not only is there no known program which solves such a problem, but that there 

could not possibly ever be a program to solve such a problem, assuming only that 

our concepts of what a computer is and what a programming language is do not 

change radically. 

 You might well ask, how it is possible to show that no one could ever write a 

program to solve a particular problem. What about newer faster computers and not 

yet invented programming techniques and languages? 

 Faster computers will not help. Algorithmic solvability is not a matter of time. 

If a problem is solvable in any finite length of time it counts as algorithmically 

solvable. If a solvable problem is not solvable with current technology in a reason-

able amount of time, it is currently infeasible, but still solvable. 

 Newer computer designs will not help. Not even quantum computers, which are 

discussed briefly in the last chapter. Anything that could rightly be called a compu-

ter must have a few characteristics. For example, it would have to generate its out-

put by means of a finite number of steps. Each step must be doable by executing a 

simple instruction of the sort that can be done by a very simple machine. Each step 

must work with a finite amount of data. Each step must be doable in a finite amount 

of time. It turns out that these characteristics alone are all that are needed for there 

to be algorithmic unsolvability. 

 Programming techniques and languages not yet invented will not help. As long 

as they are at least as powerful those that are currently available, problems that are 

algorithmically unsolvable will be just as unsolvable using those future techniques 

and languages. 

 The proof in the next section is an indirect proof. It shows that the halting problem 

is unsolvable by showing that if it were solvable then a contradictory situation would 

have to be the case. Since contradictory situations are not possible it is concluded that 

the problem is not solvable. The halting problem is a decision problem.   
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  18.2 The Halting Problem is Algorithmically Unsolvable  

 It is not uncommon for one program to have as its input some other program. A 

program is, after all, just a sequence of characters representing instructions in some 

programming language. A text editor, for example, can take a program as input and 

give a modified program as output. A compiler takes a source program as input 

and gives an object program as output. An interpreter takes a source program and 

some input for that program as input and gives as output the result of running that 

source program on that input. 

 A program may halt for some inputs and not halt for other inputs, instead it 

might go into an infinite loop for those inputs. The halting problem is: given a syn-

tactically correct program, P, and any finite sequence of symbols, I, to determine 

whether executing P with input I would or would not halt. This problem would be 

algorithmically solvable if it were possible to write a program, H, which will take 

as its input any pair <P, I> (where P is the text of some syntactically correct pro-

gram and I is any finite sequence of symbols) so that H has output “Yes” if and only 

if P would halt with input I, and has output “No” if and only if P would not halt 

with input I. It turns out that the Halting problem is not algorithmically solvable. 

Here is why. 

  Definition 6 .   The halting problem  is the problem of determining for any program, 

P, and any input, I, whether executing P with input I will result in P halting.   

 Domain: {<P, I> | P is the text of a syntactically correct program in some 

programming language and I is any finite character string} 

  Solution Condition: If P halts with input I then the solution is “Yes” and if 

P never halts with input I then the solution is “No”.    

  Theorem 1 .  The halting problem is algorithmically unsolvable.  

  Proof 
 In the following discussions, the notation P(I), will be used to denote the result 

of applying program P to input I and H(P, I) to denote the result of applying pro-

gram H to input <P, I>. 

 If the halting problem were algorithmically solvable then there would be a 

program, H, which solved it, i.e.

   H(P, I) = “Yes” just in case P(I) halts and  

  H(P, I) = “No” just in case P(I) does not halt.    

 Then, building on H, we could define another program S such that S takes the text 

of syntactically correct programs, P, as its inputs and then S does the following:

   1.    S calls H(P, P).  

   2.    If H(P, P) halts with output “Yes” then S goes into an infinite loop.  

   3.    If H(P, P) halts with output “No” then S halts.  

   4.    End of definition of S.     
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 Now consider what would happen if S were applied to itself. Clearly, S(S) halts 

or it does not halt. If S(S) halts then that must happen because of line 3 of the defini-

tion of S, hence because H(S, S) halts with output “No”. But from the definition of 

H, if H(S, S) halts with output “No,” then S(S) does not halt. This is clearly a con-

tradiction. Hence S(S) cannot halt. 

 On the other hand, if S(S) does not halt then that must be because of line 2 of 

the definition of S, hence because H(S, S) halts with output “Yes.” But from the 

definition of H, if H(S, S) halts with output “Yes” then S(S) does not halt. Again 

this is a contradiction. Hence S(S) halts. 

 We conclude that there cannot be a program such as S, and hence there cannot 

be a program such as H, and hence that the halting problem is algorithmically 

unsolvable. 

 The overall logical structure of this proof is:

   1.    If the halting problem were solvable then H would exist.  

   2.    If H existed then S would exist.  

   3.    If S existed then S(S) would halt or S(S) would not halt.  

   4.    If S(S) halted then S(S) would not halt, a contradiction.  

   5.    If S(S) did not halt then S(S) would halt, again a contradiction.  

   6.    Hence S does not exist.  

   7.    Hence H does not exist.  

   8.    Hence the halting problem is not algorithmically solvable.     

 Notice how general this proof is. It does not depend on what computer or lan-

guage is or will be used, the proof applies.   

  18.3 Other Algorithmically Unsolvable Problems  

 Not only is the halting problem algorithmically unsolvable but so are a number of 

other problems that are of interest to software developers. The fact that these prob-

lems are not algorithmically solvable might be called  programmer employability 
theorems . For example, there is the  program equivalence problem : given any pair 

of programs, determine whether that pair will always give the same output if given 

the same input. Another example is  the verification problem : given a problem and 

a program, does that program solve that problem? 

 The algorithmic unsolvability of these and many other interesting problems can 

be proved by means of a strategy known as reducing one problem to another. 

  Definition 7 .  A  problem P is reducible to a problem Q  just in case there is an 

algorithm for translating any instance of P into an instance of Q in such a way that 

the solution of that instance of Q can be translated back by an algorithm to a 

solution of the original instance of P.  
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  Example 2 .  As you already know, the problem of finding the product of any two 

positive integers is reducible to the problem of finding the sum of any number of 

positive integers. Here is how. The problem of finding the product of two positive 

integers, A and B, can be translated into the problem of finding the sum of B copies 

of A. The resulting sum is also the product of A and B.  

  Theorem 2 .  If problem P is reducible to problem Q and Q is algorithmically 

solvable then P is algorithmically solvable.  

  Proof .  This is a trivial consequence of Definition 7. To solve any instance of P, 

translate it into the corresponding instance of Q, use the algorithm of solving that 

instance of Q, then translate that solution back to the solution to the original 

instance of P.  

  Theorem 3 .  If problem P is reducible to problem Q and P is algorithmically 

unsolvable then Q is algorithmically unsolvable.  

  Proof .  An algorithmic solution to Q along with the algorithm for translating 

between instances of P and instances of Q would be an algorithm for solving P. 

Since P is algorithmically unsolvable there cannot be an algorithm for solving Q 

either.  

  Example 3 .  The halting problem is reducible to the program equivalence problem. 

Hence the program equivalence problem is algorithmically unsolvable.  

  Example 4 .  The halting problem is reducible to the verification problem. Hence by 

Theorem 3, the verification problem is algorithmically unsolvable. 

 However, despite the algorithmic unsolvability of a very general problem like 

the verification problem, there are useful special cases of those problems which are 

algorithmically solvable.      



        Chapter 19   
 Program Correctness Proofs        

 This chapter shows that despite the general unsolvability of the verification problem, 

it is possible to prove that individual programs and certain classes of programs are 

correct. After studying this material you should be able to:

   1.    Describe the limits of testing as a verification method.  

   2.    Give informal proofs of program correctness expressed in English prose.  

   3.    Use Floyd’s method to prove the correctness of some programs.  

   4.    Use rules of inference about assignment and control structures to prove the cor-

rectness of some programs.        

  Outline 

  19.1 The limits of testing  

  19.2 Proofs expressed in English prose  

  19.3 Proofs using Floyd’s method of invariant assertions  

  19.4 Rules of inference involving algorithms 

  19.4.1 Notation for statements about instructions  

  19.4.2 The assignment rule  

  19.4.3 Rules of inference about control structures   

  19.5 Proofs using rules of inference   

  19.1 The Limits of Testing  

 The basic correctness problem is to tell whether a program solves a problem. All 

programmers know that testing is one strategy for trying to establish correctness. If 

exhaustive testing is possible then a program can be proved correct by testing. For 

example, a program that is supposed to take any 8-bit sequence of 0s and 1s as input 

and give the corresponding even parity bit as output can be exhaustively tested by 

running all 256 test cases. Problems whose solutions can be obtained by looking up 
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the answer in a known list or table can be exhaustively tested. Many problems with 

only a finite number of different allowed input values can be exhaustively tested. 

But in general exhaustive testing is not possible, and less than exhaustive testing 

can not show the absence of errors. 

 Suppose you wanted a program that took any real number as input and returned 

the absolute value of that number as output. And suppose someone presented you 

with the following algorithm as a design for such a program.

   Algorithm absoluteValue (N)  

  # Precondition: N is a real number.  

  # Postcondition: Returns the absolute value of N.

   If (N >= 0) then

    abs ← N     

  Else

    abs ← -N     

  Endif  

  Return abs     

  Endalgorithm    

 What could you do to investigate whether this algorithm solves your problem? 

Would testing be appropriate? How much testing? Would a lot of testing provide 

more support than a little testing? 

 If the algorithm were expressed in a programming language then you should 

compile the program just to be sure that it is grammatically correct, but aside from 

concerns about grammatical correctness, testing is really not appropriate for this 

algorithm because you can “see” that it is correct. What is appropriate here is a 

correctness proof.  

  19.2 Proofs Expressed in English Prose  

 Program verification involves reasoning about the problem and the program. It does 

not (usually) involve testing. Even if an attempt at verification fails, it may still lead 

to better understanding of what is wrong with the program (or possibly with the 

problem). If the attempt succeeds then it provides powerful evidence that the pro-

gram does solve the problem. In that case we say that we have verified that the 

program solves the problem, or that we have a proof of correctness of the program 

(with respect to that problem). Of course human reasoning is error prone, so we can 

never be absolutely sure that a proof of correctness is itself correct. Errors in proofs 

themselves can be reduced by making the proofs formal enough that they can be 

checked by computer programs, assuming that the program that does the checking 

is itself correct. The least formal, but easiest to make correctness proofs are those 

expressed in ordinary English, as in the following examples. 

  Example 1 .  Let Pr be the problem of finding the sum of any four numbers. Let A 

be the following algorithm.
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   0 Algorithm sumOfFour(N1, N2, N3, N4)  

   # Pre: N1, N2, N3, and N4 are numbers.  

   # Post: Returns the sum of N1, N2, N3, and N4.  

  1  sum12 ← N1 + N2  

  2  sum34 ← N3 + N4  

  3  sum ← sum12 + sum34  

  4  Return sum  

   EndAlgorithm     

  Proof of correctness .  The proof is almost trivial. After line 1, sum12 is N1 + N2. 

After line 2, sum34 is N3 + N4. Hence, after line 2, sum12 + sum34 is (N1 + N2) 

+ (N3 + N4). Then, after line 3, sum is sum12 + sum34. Hence, after line 3, sum 

is (N1 + N2) + (N3 + N4). Finally, after line 4, since sum is returned and sum is 

(N1 + N2) + (N3 + N4), it follows that the sum of N1, N2, N3, and N4 is 

returned.  

  Example 2 .  Consider again the problem, Pr, of finding the absolute value of any 

given real number. Let A be the algorithm below.

   0 Algorithm absoluteValue (N)  

   # Precondition: N is a real number.  

   # Postcondition: Returns the absolute value of N.  

  1  If (N >= 0) then  

  2 abs ← N  

  3  Else  

  4 abs ← -N  

  5  Endif  

  6  Return abs  

   EndAlgorithm     

  Proof of correctness .  Verifying that A solves Pr is almost trivial, since the argu-

ment follows the definition of absolute value so closely. Here is the argument. 

Suppose N is any real number. Then from our knowledge of arithmetic we know 

that either N >= 0 or N < 0. If N >= 0 then, by the definition of absolute value, 

the absolute value of N is N itself. In line 2 of the program, N >= 0 and abs is 

assigned N. Hence if N>= 0 then at the end of line 2, abs is the absolute value of 

N. On the other hand, if N < 0 then, again by the definition of absolute value, the 

absolute value of N is -N. Also, if N < 0 then abs in the program is assigned -N 

at line 4. So if N < 0 then, at the end of line 4, abs is the absolute value of N. 

Consequently, regardless of whether N >= 0 or N < 0,after line 5 abs is the abso-

lute value of N. At line 6 abs is returned. Hence the program returns the absolute 

value of N. Hence A solves Pr.  

  Example 3 .  Let Pr be the problem of finding the sum of any nonempty finite 

sequence of numbers. Let A be the following.
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   0 Algorithm findSum(N)  

   # Pre: N is a nonempty finite sequence of numbers.  

   # Post: Returns the sum of the elements of N.  

  1 I ← 0  

  2 sumSoFar ← N[I]  # Assumes array indices start at 0.  

  3 I ← 1  

  4 While (I < length of N) do  

  5 sumSoFar ← sumSoFar + N[I]  

  6 I ← I + 1  

  7 Endwhile  

  8 Return sumSoFar  

   EndAlgorithm     

  Proof of correctness .  Because a loop is involved, verifying that A solves Pr is a 

bit harder here than in the previous examples. First notice that after line 3 sumSo-

Far = N[0] and it is the sum of the first 1 elements of N. Moreover, the only other 

place that sumSoFar is assigned is at line 5 in the body of the loop. The first time 

through the loop I = 1 and at the end of line 5 sumSoFar = N[0] + N[1]. The second 

time through the loop I = 2 and at the end of line 5 sumSoFar = N[0] + N[1] + 

N[2]. In general, every time through the loop, at the end of line 5 sumSoFar = N[0] 

+ N[1] + … + N[I], then 1 is added to I, so at the end of line 6 sumSoFar is the 

sum of the first I elements of N. Finally, when the loop terminates, I = the length 

of N (i.e. the number of elements of N), so sumSoFar = N[0] + N[1] + … + N[I - 

1], and N[I - 1] is the last element of N. Hence at that point sumSoFar is the sum 

of all the elements of N. Since line 8 returns sumSoFar, the function returns the 

sum of all the elements of N. 

 Some things to notice about these verifications are:

   1.    The verification process involves a lot of reasoning, as expressed in arguments.  

   2.    The arguments are general, they are not about specific test cases.  

   3.    If the arguments are correct then they do establish with near certainty than the 

algorithm is correct, i.e. that it solves the problem.  

   4.    A proof of correctness of an algorithm does not show that a program that you 

believe implements the algorithm is correct and it does not establish that the data 

your real program has to work with satisfies the preconditions of the algorithm.  

   5.    If an algorithm were complex its verification would be long.  

   6.    Even if the arguments are correct, they can be hard to follow if the verification 

is more than a few lines long.      

  Exercise 1 .  Write proofs of correctness in the style of examples 1 – 3 for each of the 

following algorithms.

    (a)     

    0 Algorithm countZeros(L)  

   # Pre: L is a list of numbers.  

   # Post: Returns the number of zero elements of L.  
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   1 count ← 0 # Count is number of zeros found so far.  

   2 I ← 0 # I is loop control variable  

   3 While (I < len(L)) do  

   4 If (L[I] = 0) then count ← count + 1 Endif  

   5 I ← I + 1  

   Endwhile  

   6 Return count  

   # EndAlgorithm     

    (b)     

    0 Algorithm countNZP(L)  

   # Pre: L is a list of numbers.  

   # Post: Returns <number of negative elements of L, number of zero  

   # elements of L, number of positive elements of L>  

   1 nCount ← 0 # nCount is number of negatives found so far.  

   2 zCount ← 0 # zCount is number of zeros found so far  

   3 pCount ← 0 # pCount is number of positives found so far  

   4 I ← 0 # I is loop control variable  

   5 While (I < len(L)) do  

   6 If L[I] < 0 then nCount ← nCount + 1 Endif  

   7 If L[I] = 0 then zCount ← zCount + 1 Endif  

   8 If L[I] > 0 then pCount ← pCount + 1 Endif  

   9 I ← I + 1  

   Endwhile  

  10 Return <nCount, zCount, pCount>  

   # EndAlgorithm     

    (c)     

    0 Algorithm isReverseOf(A, B)  

   # Pre: A and B are 1-dim arrays of numbers of the same length  

   # Post: Returns true if B is reverse of A, else returns false  

   1 reply ← true  

   2 If (len(A) <> len(B)) then  

   3   reply ← false  

   Else  

   4   I ← 0  

   5   While (I < len(A)) and (reply = true)) do  

   6   If (A[I] <> B[len(A) - (1 + I)]) then  

   7   reply ← false   

   Endif  

   8 I ← I + 1  

   Endwhile  

   Endif  

   9 Return reply  

   EndAlgorithm     
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   (d)     

    0 Algorithm isSorted(A)  

   # Pre: A is a nonempty 1-dim array of numbers.  

   # Post: Returns “yes” if A is sorted (in either ascending or  

   # descending order) and returns “no” otherwise.  

   # First determine whether sorted ascending.  

   1 ASORTED ← “yes” # Change to “no” if found to be unsorted.  

   2 I ← 0  

   3 While (I < Len(A) – 1 and ASORTED = “yes”) Do  

   4 If (A[I] > A[I + 1]) then  

   5 ASORTED ← “no”  

   Endif  

   6 I ← I + 1  

   Endwhile  

   # Then check for sorted descending  

   7 DSORTED ← “yes” # Change to “no” if found to be unsorted.  

   8 I ← Len(A) – 1  

   9 While (I > 0 and DSORTED = “yes”) Do  

  10 If (A[I – 1] < A[I]) then  

  11 DSORTED ← “no”  

   Endif  

  12 I ← I – 1  

   Endwhile  

  13 If (ASORTED = “yes” or DSORTED = “yes”) then  

  14 return “yes”  

   Else  

  15 return “no”  

   Endif  

   EndAlgorithm          

  19.3 Proofs Using Floyd’s Method of Invariant Assertions  

 There are several methods for helping to find and organize correctness proofs other 

than using informal English. The method described here is based on the work of R. 

W. Floyd and others. It is called  Floyd’s Method  or  the method of invariant asser-
tions . It consists of annotating some representation of the program with various 

assertions which, along with justifications for those assertions, will show that the 

algorithm being discussed is correct. Originally the representation of the  algorithm 

used was a flowchart, but a listing of the program can also be used. The reason why 

the assertions are called “invariant” assertions is that they are always (invariably) 

true whenever execution of the program reaches the point to which they are 

attached. 
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  Example 4 .  Representing Example 1 above in this way is very easy as it uses only 

sequential control structure.  

 The key features to notice here are:

   1.    The first invariant assertion is the precondition of the algorithm.  

   2.    The last invariant assertion is the postcondition of the algorithm.  

   3.    There is a “chain” of intermediate assertions on the only path through the 

program.  

   4.    On a given chain of assertions, each assertion after the first follows logically 

from previous assertions and the actions described in the corresponding path of 

the program up to that point on the chain.  

   5.    In this example there are no loops, hence the program will always terminate.  

   6.    To complete the proof, each invariant assertion should be accompanied by the 

reasons, as given earlier, for why the reader should believe that that assertion is 

true.  

   7.    This example is misleading in one respect. It has an invariant assertion following 

each instruction in the algorithm. This is not necessary. There could be many 

instructions between successive invariant assertions.      

  Example 5 .  Consider Example 2 once again. In this example, the control flow is 

represented graphically by a flowchart.  
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 The key features to notice here are:

   1.    The first invariant assertion is the precondition of the algorithm.  

   2.    The last invariant assertion is the postcondition of the algorithm.  

   3.    There is a “chain” of intermediate assertions on every path through the 

program.  

   4.    On a given chain of assertions, each assertion after the first follows logically 

from previous assertions and the actions described in the corresponding path of 

the program up to that point on the chain.  

   5.    In this example there are no loops, hence no question but what the program will 

always terminate.  

   6.    To complete the proof, each invariant assertion should be accompanied by the 

reasons, as given earlier, for why the reader should believe that that assertion is 

true.  

   7.    Not every instruction is followed immediately by an invariant assertion.      

  Example 6 .  Representing Example 3 above requires dealing with a loop,  

 The new feature to notice here is the loop and the assertion attached to it, called 

a loop invariant. It is a statement that is true after line 6 is executed, no matter how 

many times the loop is executed. The method of invariant assertions is named after 

loop invariants. 
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 Another important point is that we are sure the loop will eventually terminate. 

This is because I starts out less than length(N) and each time through the loop I is 

increased by 1. By virtue of the rules of arithmetic, I must eventually = length(N), 

which causes the loop to terminate. Hence if the loop body is executed then the 

algorithm will terminate. Moreover, if the loop body does not execute, because 

length(N) = 1, the algorithm will still terminate, and sumSoFar will still be the sum 

of all the elements of N.   

  19.4 Rules of Inference Involving Algorithms  

 The major problem with using the method of invariant assertions is finding appro-

priate assertions and reasoning correctly about them. Here logic can help, although 

it will not do the whole job. The part of logic described in earlier chapters has been 
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known for a long time and is often said to be  classical logic . The discussion below 

introduces some new kinds of statements and rules of inference that involve instruc-

tions and algorithms. This new part of logic is of recent origin and is sometimes 

called  Floyd-Hoare logic . 

  19.4.1 Notation for Statements Involving Instructions 

 Consider the following conditional statement: 

 If (initially) X + 7 were less than Y and then Z was assigned the value of X + 7, 

then (immediately thereafter) Z would be less than Y. 

 In the discussion below we will use the notation {A} P {B} to represent condi-

tional expressions of that kind. Notations like {A} P {B} are known as  Hoare 
 triples , after C. A. R. Hoare. Spacing on a page often makes it more convenient to 

write them vertically.

   {A} (precondition)  

  P    (instruction(s))  

  {B} (postcondition)    

 Using this notation, and a few other abbreviations, the statement above could be 

written:

   {X + 7 < Y} (precondition)  

  Z ← X + 7  (instruction)  

  {Z < Y} (postcondition)    

 In general the notation {A} P {B} will represent the claim that if the conditions 

described by the assertion(s) {A} obtained immediately before executing 

instruction(s) P, then the attempt to execute P would eventually end and, when it 

did, the conditions described by the assertion(s) {B} would obtain immediately 

after executing P. The statements of {A} are called preconditions for P and the 

statements of {B} are called postconditions for P. It is important to notice that the 

parts of this kind of conditional are joined by “and then” rather that by the simple 

truth functional “and”.  

  19.4.2 The Assignment Rule 

 Let P(v) be a condition involving the program variable v and let e be any expression. 

The assignment rule is: if P(v) is true when expression e is substituted for each instance 

of v in P(v), and if v is then assigned the value of e, then, after the assignment, P(v) is 

true. The expression P(e/v) is used to represent the result of replacing each instance of 

v in P(v) with the expression e. It is read as “P with e in place of v”. 
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 The Assignment Rule
   {P(e/v)}  

  v ← e  

  {P(v)}    

  Example 7  
   {2 = 2) P(e/v) when P(v) is v = 2 and e = 2  

  v ← 2 v ← e  

  {v = 2} P(v)  

  {1+1 = 1+1} P(e/v) when P(v) is v = 2 and e is 1+1  

  v ← 1+1 v ← e  

  {v = 1+1} P(v)  

  {X + 7 < Y} P(e/v) when P(v) is v < Y and e is X + 7  

  v ← X + 7 v ← e  

  {v < Y} P(v)  

  {10 < x + y < 20} P(e/z) when P(z) is 10 < z < 20 and e is x + y  

  z ← x + y z ← e  

  {10 < z < 20} P(z)  

  {x + 1 > 1} P(e/y) when P(y) is y > 1 and e is x + 1  

  y ← x + 1  

  {y > 1}  

  {3(x + 1) + 2 > z P(e/x) when P(x) is 3x + 2 > z and e is x + 1  

  x ← x + 1  

  {3x + 2 > z}  

  2(x + 3) < 5(x + 3)  P(e/z) when P(z) is 2z < 5z and e is x + 3  

  z ← x + 3  

  2z < 5z    

 It is important to be aware that while the examples above are read from top to 

bottom, when proving programs correct the rule is applied backwards, i.e. P(e/v) is 

constructed so that P(v) will be true after v ← e is executed. This will be shown in 

example proofs below.  

  Exercise 2 .  In each case, find {P(e/v)} given v ← e and {P(v) where v is some 

variable.  

   a.    v ← 5 {v = 5}  

   b.    x ← z + 4 {3x + 1 > 12  

   c.    x ← x + 5 {x + 5 < z + x}  

   d.    z ← min(x, y) {z + max(x, y) < 0}       
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  19.4.3 Rules of Inference about Control Structures 

 Consider the following argument. 

 if X were < 3 and then Y was assigned X then Y would be < 3. Moreover if Y 

were < 3 and then Z was assigned Y then Z would be < 3. Therefore, if X were < 

3 and then Y was assigned X and then Z was assigned Y then Z would be < 3. 

 Expressed symbolically this could be written:

   {X < 3} Y ← X {Y < 3}  

   {Y < 3} Z ← Y {Z < 3}   

  {X < 3} Y ← X; Z ← Y {Z < 3}    

 In general we have: 

 The Sequence Rule

   {A} P1 {B}  

   {B} P2 {C}   

  {A} P1;P2 {C}    

 In this rule, also called the  rule of composition , P1 and P2 represent any pair of 

instructions while P1;P2 represents the single compound instruction whose compo-

nents are P1 and P2 in that order. The sequence rule can be applied over and over 

to construct valid arguments about arbitrarily long sequences of instructions. 

 Notice that the differences among “is”, “was” “were”, and “would be”, are not 

explicitly indicated in the symbolic notation. However, they are not to be regarded 

as lost but as implicit in the notation. 

 There are several rules involving conditional expressions. One of them is a gen-

eralization of the following example. 

 If X were = Y and Y were = Z and then Z was assigned   Z + 1, then X would not = Z. 

Moreover if X were = Y and Y was not = Z then X would not = Z. Consequently, if X were 

= Y and then the conditional instruction “If Y = Z then Z is assigned Z + 1” was executed 

then X would not = Z (whether or not Y = Z initially). 

 Put in symbolic form this becomes:

   {X = Y and Y = Z} Z ← Z + 1 {not X = Z}   

   If (X = Y and not Y = Z) then not X = Z   

  {X = Y} If Y = Z then Z ← Z + 1 {Not X = Z}    

 More generally we have: 

 The If Rule

   {A ∧ C} P {B}  

   (A ∧ ∼C) → {B}   

  {A} If C then P {B}    

 Here A, B, and C represent conditions (statements), P represents an instruction, 

and “If C then P” represents the corresponding conditional instruction. 



19.4 Rules of Inference Involving Algorithms    223

 Another rule involving conditional instructions is exemplified by the following 

argument, in which “NUM(X)” stand for “X is a number” and “ABS(X)” stand for 

“the absolute value of X”. 

 If X were a number less than 0 and then Y was assigned -X, then Y would = 

ABS(X). On the other hand, if X were a nonnegative number and then Y were 

assigned X, then Y would = ABS(X). Therefore, we could conclude that if X 

were a number and then the conditional instruction ‘If X < 0 then Y ← -X else 

Y ← X’ were executed, Y would = ABS(X). 

 Expressed as an instance of a rule of inference this becomes:

   {NUM(X) and X < 0} Y ← -X {Y = ABS(X)}  

   {NUM(X) and X => 0) Y ← X {Y = ABS(X)}   

  (NUM(X)} If X < 0 then Y ← -X else Y ←X {Y = ABS(X)}    

 The general rule is: 

 The If Else Rule

   {A ∧ C} P1 {B}  

   {A ∧ ∼C} P2 {B}   

  {A} If C then P1 else P2 {B}    

 Here again A, B, and C represent conditions (statements), P1 and P2 represent 

instructions, and “If C then P1 else P2” represents the corresponding conditional 

instruction. 

 There are also rules involving the various kinds of loops. Here is one example 

involving While Do. Suppose you want to compute the SUM of the elements in a 

LIST of N numbers where N > 0. You could do this as follows:

   1.    COUNT ← 1  

   2.    SUM ← LIST[COUNT]  

   3.       

   4.    WHILE (COUNT < N) DO  

   5.     COUNT ← COUNT + 1  

   6.     SUM ← SUM + LIST[COUNT]  

   7.    END WHILE     

 The strategy of the algorithm is to accumulate elements of LIST into SUM until 

SUM is the sum of all of them. More precisely, notice that at line 4 if SUM were 

the sum of the first COUNT elements of LIST and COUNT were < N and then the 

body of the loop (lines 5 & 6) were executed once, then SUM would still be the 

sum of the first COUNT elements of LIST (whether or not COUNT were still < N). 

The fact that SUM continues to be the sum of the first COUNT elements of LIST 

is called a loop invariant of that loop. Using I to stand for that loop invariant, using 

C to abbreviate the claim that COUNT < N, and using P to represent the body of 

the loop (= the instructions of lines 5 and 6), the next to last statement can be 

written:
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   {I ∧ C} P {I}    

 Since the loop is executed while C is true, i.e. while COUNT < N, at line 8, 

immediately after the loop execution is completed, we know that I and not C, i.e. 

SUM is the sum of the first COUNT elements of LIST and not COUNT < N. 

 Moreover, since during the next to last iteration of the loop COUNT was < N 

and COUNT is increased by one each time through the loop, COUNT must now = 

N. Consequently, SUM is the sum of the first N elements of LIST, which is all the 

elements of LIST. The general rule of which this is an example is: 

 The While Do Rule

    { I ∧ C } P { I }   

  { I } WHILE C DO P { I ∧ ∼C }    

 Here I represents a loop invariant, C represents the loop exit condition, and P 

represents the loop body. 

 Other kinds of loops have their own rules. As with classical logic, there are (infinitely) 

many other rules of inference and several slightly different ways to express them.   

  19.5 Proofs Using Rules of Inference  

  Procedure PC : Given the precondition and postcondition for a problem and given 

an algorithm, to prove that this algorithm solves this problem do the following: 

 Step 1. Write the algorithm vertically as described below

   Algorithm algorithmName(input parameter list)  

  # Pre: Precondition

   First instruction  

  Second instruction  

  …  

  Last instruction     

  # Post: Postcondition    

 Step 2. Beginning with the postcondition and working toward the precondition, insert 

one or more midconditions between each instruction. Each midcondition is a precondi-

tion for the instruction following it and a postcondition for the instruction just prior to it. 

Midconditions must be chosen so that each one can be derived from axioms, definitions, 

and earlier instructions and conditions by means of rules of inference and previously 

established results including the theorems of logic, mathematics, and computer science. 

 Step 3. Indicate which rule of inference justifies each midcondition or postcondi-

tion, adding explanatory comments as you think appropriate. Here conditions in 

Hoare triples are indicated with # as a prefix rather than being enclosed in curly 

brackets. The result should look like this:



19.5 Proofs Using Rules of Inference    225

   Algorithm algorithmName(input parameter list)  

  # Pre: Precondition

   First instruction  

  # Midcondition justification and comments  

  Second instruction  

  # Midcondition justification and comments  

  …  

  Last instruction        

  # Post: Postcondition justification and comments    

 If the conditions, instructions, justifications, and comments are expressed very 

informally then the result is an informal correctness proof. If conditions, instruc-

tions, and justifications are expressed formally then the result is a formal correct-

ness proof. Formal correctness proofs can be checked for correctness by computer 

programs but people usually find them long and boring. Informal proofs cannot 

(yet) be checked for correctness by computer programs, but they are easier for 

human beings to read and check. 

 Computer programs can help people generate correctness proofs and people can 

help computers generate correctness proofs, but except for limited kinds of pro-

grams, computers cannot generate error free correctness proofs on their own. 

 In the examples and exercises given here, instructions will be limited to assign-

ment instructions, if-then and if-then-else instructions, while-do instructions, with 

nesting of one type of instruction in another allowed. Only simple conditions and 

mathematical operations will be used. 

  Example 8 .  Another proof of Example 1.

    0 Algorithm sumOfFour(N1, N2, N3, N4)  

   1 # Pre: N1, N2, N3, and N4 are numbers.  

   2 # N1 + N2 = N1 + N2 Identity Laws  

   3 sum12 ← N1 + N2  

   4 # sum12 = N1 + N2 Assignment Rule  

   5 # N3 + N4 = N3 + N4 Identity Laws  

   6 sum34 ← N3 + N4  

   7 # sum34 = N3 + N4 Assignment Rule  

   8 # sum12 + sum34 = sum12 + sum34 Identity Laws  

   9 sum ← sum12 + sum34  

  10 # sum = sum12 + sum34 Assignment Rule  

  11 # sum =(N1 + N2) + (N3 + N4) Substitution Rule  

  12 # sum = N1 + N2 + N3 + N4 Arithmetic  

  13 Return sum  

  14 # Post: Returns N1 + N2 + N3 + N4 Substitution Rule  

   EndAlgorithm    
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 The proof is constructed from line 14 upwards. Of course, the number of lines 

and which lines get what numbers is not known until the proof is completed. 

 Line 14 states the postcondition that should be true immediately after line 13 is 

executed. Line 12 is constructed so this will be true. Line 11 is constructed so as to 

conform to the punctuation in line 9. Line 10 is constructed from line 11 by substi-

tution. Line 10 is constructed from line 9 and line 8 is constructed from lines 9 and 

10 in anticipation of applying the Assignment rule to lines 8, 9 and 10. To see how 

this works, recall the Assignment Rule.

   {P(e/v)}  

  v ← e  

  {P(v)}    

 To apply it, line 10 must play the role of P(v) and line 9 must play the role of v → e 

in the Assignment rule. Hence sum corresponds to v and sum12 + sum34 corre-

sponds to e. Hence P(e/v) must be sum12 + sum34 = sum12 + sum34, which is line 

8. This is summarized in the following table.  

  The role of    is played by  

 P(v)  sum = sum12 + sum34 

 v  sum 

 e  sum12 + sum34 

 v ← e  sum ← sum12 + sum34 

 P(e/v)  sum12 + sum34 = sum12 + sum34 

 Similarly the Assignment rule is the only rule to use on line 6 and line 3. With 

this in mind, line 7 is constructed from line 6 and line 5 is constructed from lines 6 

and 7 with sum34 as v and N3 + N4 as e. And line 4 comes from line 3 and line 2 

comes from lines 3 & 4 with sum12 as v and N1 + N2 as e. 

 Now that the proof is constructed, it can be read from top to bottom as a proof 

would normally be read. Line 1 is the precondition, so it needs no other justifica-

tion. Line 2 is an instance of the Identity laws. Line 3 is an instruction of the algo-

rithm so it needs no justification. Line 4 follows from lines 2 and 3 by the 

Assignment rule. Line 5 is another instance of the Identity laws, line 6 is another 

instruction, and line 7 follows from lines 5 and 6 by the Assignment rule. Similarly, 

line 8 is another instance of the Identity laws, line 9 is an instruction, and line 10 

follows from lines 8 and 9 by the Assignment rule. Line 11 follows from lines 4, 7 

and 10 by Substitution. Line 12 follows from 11 by the parenthesis dropping con-

ventions of arithmetic. Line 13 is an instruction and line 14 follows from 12 and 13 

by substitution. 

 Another way to view this proof is that it, along with several applications of the 

sequence rule, shows that the Hoare triple below is true.

   {N1, N2, N3, and N4 are numbers.}  

  sumOfFour(N1, N2, N3, N4)  

  {Returns N1 + N2 + N3 + N4}     
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  Example 9 .  Another proof of Example 2.

    0 Algorithm absoluteValue (N)  

   1 # Precondition: N is a real number.  

   2 # N >= 0 → N = |N| ∧ ∼N >= 0 → -N = |N| Def of |N|  

   3 If (N >= 0) then  

   4 # N = |N| If Rule  

   5 abs ← N  

   6 # abs = |N| Assignment Rule  

   7 Else  

   8 # -N = |N| If Rule  

   9 abs ← -N  

  10 # abs = |N| Assignment Rule  

   Endif  

  11 # abs = |N| If Rule  

  12 Return abs  

  13 # Postcondition: Returns |N| Substitution  

   EndAlgorithm    

 The proof is constructed from line 13 upwards with a view to applying the If 

Else Rule.

   {A ∧ C} P1 {B}  

   {A ∧ ∼C} P2 {B}   

  {A} If C then P1 else P2 {B}    

 Line 13 which is the postcondition is implied by lines 11 and 12 using substitu-

tion. If the following role assignments are made then lines 2 through 11 are an 

instance of the If Then Rule:  

 The role of  is played by 

 A  N >= 0 → N = |N| ∧ ∼N >= 0 → -N = |N| 

 C  N >= 0 

 P1  abs ← N 

 ∼C  ∼N >= 0 

 P2  abs ← -N 

 B  abs = |N| 

 Finally note that line 2 is implied by the line 1. 

 Another way to view this proof is that it, along with several applications of the 

sequence rule, shows that the Hoare triple below is true.

   {N is a number.}  

  absoluteValue(N)  

  {Returns |N|}     

  Example 10 .  Another proof of Example 3, with J written in place of I to avoid 

confusion with the I in the While Do Rule.



228 19 Program Correctness Proofs         

     Algorithm findSum(N)  

   # Pre: N is a nonempty finite sequence of numbers.  

   # Post: Returns the sum of the elements of N.  

   J ← 0  

   sumSoFar ← N[J] //Assumes array indices start at 0.  

   J ← 1  

   While (J < length of N) do  

   sumSoFar ← sumSoFar + N[J]  

   J ← J + 1  

   Endwhile  

   Return sumSoFar  

    EndAlgorithm    

 This proof is mostly an application of the While Do Rule.

    { I ∧ C} P { I }   

  { I } While C Do P { I ∧ ∼C }    

 In order to apply this rule pieces of the algorithm have to be matched to pieces of 

the rule. Obviously P is the body of the loop and C is the loop control condition. So  

 The role of  is played by 

 P  sumSoFar ← sumSoFar + N[J] 

 J ← J + 1 

 C  J ← length of N 

 The problem is I. What is it doing and how can it be found. I is called a  loop 
invariant . It is supposed to be a condition such that if it is true just before the 

loop body is executed then it will still be true immediately after execution of 

the loop body ends, no matter how many times the loop body is executed. It may 

be useful to think of it as “what the loop does”, although it is not necessary to char-

acterize it that way. It should also be a condition that aids overall progress of the 

proof, so it should follow form previously proved conditions. And its truth, along 

with the truth of ~C, should aid in proving later conditions. There are many condi-

tions which are loop invariants for a given loop but which are probably not useful. 

For example, any logically true condition. The problem is to find a useful loop 

invariant. It turns out that finding useful loop invariants cannot be reduced to formal 

rules. It requires luck or ingenuity. This is why the process of constructing proofs 

of correct algorithms cannot be automated. 

 In this case let I be “sumSoFar is the sum of the first J elements of N”. Then  

 The role of  is played by 

 P  sumSoFar ← sumSoFar + N[J] 

 J ← J + 1 

 C  J < length of N 

 I  sumSoFar is the sum of the first J elements of N 
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 When the loop is first encountered sumSoFar = N[0], J = 1, and so sumSoFar is the 

sum of the first J elements of N. If the length of N is 1 then J ← length of N, the 

loop body will not be executed, and just after the loop I ∧ ∼C will be true. On 

the other hand if N has more elements then the loop body is executed so the value 

of the next element of N is added to sumSoFar and J is increased by 1. Consequently 

after the loop body is executed it will still be the case that sumSoFar is the sum of 

the first J elements of N. Each time J < length of N this process of adding the next 

element of N to sumSoFar and adding 1 to J will be repeated. And at the end of each 

execution of the loop body sumSoFar is the sum of the first J elements of N. If the 

loop halts it will be that J is not < length of N. Moreover, since J increases by 1 each 

time, when the loop halts J = length of N. Hence sumSoFar will be the sum of all 

the elements of N. This reasoning is embodied in the proof below.

     Algorithm findSum(N)  

     # Pre: N is a nonempty finite sequence of numbers.  

   # Assumes array indices start at 0.

    # 0 = 0 Identity Laws  

   J ← 0  

   # J = 0 Assignment Rule  

   # N[J] =N[J] Identity Laws  

   sumSoFar ← N[J]  

   # sumSoFar = N[J] Assignment Rule  

   # sumSoFar = N[0] Substitution  

   J ← 1  

   # sumSoFar is the sum of the first J elements of N  

   While (J < length of N) do  

   # sumSoFar is the sum of the first J elements of N ∧  

   # J ← length of N

    sumSoFar ← sumSoFar + N[J]  

   J ← J + 1     

   Endwhile  

   # sumSoFar is the sum of the first J elements of N ∧  
   # J = length of N Arithmetic and While Do Rule  

   Return sumSoFar Substitution     

   # Post: Returns the sum of the elements of N.  

   EndAlgorithm    

 Another way to view this proof is that it, along with several applications of the 

sequence rule, shows that the Hoare triple below is true.

    {N is a nonempty sequence of numbers}  

   findSum  

   {Returns the sum of the elements of N}     

  Exercise 3 .  In each part an incomplete instance of a rule of inference is given. 

Identify the rule you can apply and fill in the missing conclusion.
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   (a)     

   {x and y are integers} z ← x * y {x and y are factors of z}  

   {x and y are factors of z} w ← z   2    {x   2    and y   2    are factors of w}   

   ?     

   (b)     

   {x < 0} y ← x 2  {y > 0}  

   {y > 0} z ← -y {z < 0}   

     ?     

   (c)     

   {x and y are numbers and x >= y} max ← x {max is the larger of x and y}  

   {x and y are numbers and ~x >=y} max ← y {max is the larger of x and y}   

   ?     

   (d)     

   {a divides b and a divides c} a ← b {a divides b * c}  

   (a divides b and ~a divides c) → (a divides b * c)    

   ?     

   (e)     

    F = J factorial ∧ J < N} J ← J + 1; F ← F * J {F = J factorial}   

   ?     

   (f)     

    {P = 2   J    ∧ J < N} J ← J + 1; P ← 2 * P {P = 2   J   }   

   ?         

  Exercise 4 .  Give complete proofs of correctness (supplying midconditions and 

reasons) for each of the following algorithms.

   (a)     

   Algorithm maxOf2(x, y)  

  # Pre: x and y are numbers.  

  # Post: Returns the maximum of x and y.

   If (x >= y) then

   max ← x     

  Else

   max ← y     

  Endif  

  Return max     

  EndAlgorithm     

   (b)     

   Algorithm oddFloor(x)  

  # Pre: x is an integer.  

  # Post: Returns the largest odd integer <= x.

   If (x is odd) then

   rtnVal ← x     
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   Else

   rtnVal ← x –1     

   Endif  

   Return rtnVal     

   EndAlgorithm     

   (c)     

   Algorithm powerOf2Floor(x)  

  # Pre: x is a number >=1.  

  # Post: returns the largest power of 2 < = x

   J ← 0  

  While (2 J  <= x) Do

   J ← J + 1     

  EndWhile  

  Return 2 J-1      

  EndAlgorithm     

   (d)     

   Algorithm countLower(L, B)  

  # Pre: L is a nonempty list of numbers and B is a number.  

  # Post: Returns the number of elements of L which are < B.

   bCount ← 0  

  J ← 0  

  While (J ← len(L)) Do

   If (L(J) < B then

   bCount ← bCount + 1     

  Endif  

  J ← J + 1     

  EndWhile  

  Return bCount     

  EndAlgorithm                



        Chapter 20   
 Above and Beyond this Book       

  This chapter provides information for readers who want to learn more about topics 

discussed in previous chapters and readers who want to learn about related top-

ics not discussed here. In place of exercises, a few programming challenges are 

provided. 

 Both the ACM and the IEEE Computer Society maintain extensive and overlap-

ping digital libraries which can be accessed for a moderate fee. They contain articles 

on nearly all topics involving the intersection of computing and logic. Your favorite 

web search engine will get more hits than you have time to look at for any of those top-

ics. I intend to post links to relevant web sites at   www.logicforsoftwaredevelopment.

com    . Listed below are a few books which either go more deeply into topics discussed 

in this book or discuss related topics not discussed here. The background provided in 

this book is either helpful or necessary for understanding most of them.    

  Outline 

  20.1 Other texts on classical logic 

  20.1.1 Standard texts  

  20.1.2 Computing oriented texts   

  20.2 Extensions of classical logic 

  20.2.1 Floyd-Hoare logic  

  20.2.2 Temporal, modal, and dynamic logics   

  20.3 Rivals to classical logic  

  20.4 Applications of logic to computing or computing to logic 

  20.4.1 Logic circuits  

  20.4.2 3-valued logic and SQL  

  20.4.3 More on expressing and using specifications  

  20.4.4 Logic testing of software  

  20.4.5 Computability and algorithmic unsolvability  

  20.4.6 AI and computer aided reasoning  

  20.4.7 Quantum computing and programming   

  20.5 Programming challenges   
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  20.1 Other Texts on Classical Logic  

  20.1.1 Standard Texts 

 Many of the best logic texts are written by philosophers, logicians, and mathematicians 

with little thought given to computing applications. In addition to the books men-

tioned in Sources and Bibliography,  Language, Proof and Logic  (Barwise, 

Etchemendy 2002) is particularly interesting because it includes several programs 

designed to help the reader learn logic, and it comes with a grading service whereby 

readers can submit answers to exercises to be graded by a program at Stanford 

University. Other books worth considering are  Boolean Reasoning: The Logic of 
Boolean Equations  (Brown 2003),  Methods of Logic  (Quine 1982),  Axiomatic Set 
Theory  (Suppes 1972), and  Boolean Algebra and Its Applications  (Whitesitt 1995).  

  20.1.2 Computer Oriented Texts 

  Proof and Disproof in Formal Logic: An Introduction for Programmers  (Bornat 

2005),  Logic for Information Technology  (Galton 1990),  Discrete Structures, Logic, 
and Computability  (Hein 2002),  Logic in Computer Science  (Huth, Ryan 2004), 

 Logic: A Foundation for Computer Science  (Sperschneider, Antonion 1991),  Logic 
for Computer Science  (Reeves, Clarke 1990), and  The Deductive Foundations of 
Computer Programming  (Zohar 1993) are worth examining.   

  20.2 Extensions of Classical Logic  

 There are a number of extensions of and rivals to classical logic that are relevant to 

computer science. A brief survey is contained in  Logics for Artificial Intelligence  

(Turner 1984). 

  20.2.1 Floyd-Hoare Logic 

 One extension of classical logic, Floyd-Hoare logic, was introduced in Chap. 19. 

Sources in this tradition include  The Design of Well-Structured and Correct 
Programs  (Alagic, Arbib 1978),  Proving Programs Correct  (Anderson 1979), 

 Verification of Sequential and Concurrent Programs  (Apt, Olderolg 1991),  Formal 
Methods of Program Verification and Specification  (Berg, Boebert, Franta, 

Moher1982),  A Discipline of Programming  (Dijkstra 1976),  Program Verification  

(Francez 1992),  The Science of Programming  (Gries 1981), and  Programming 
Logics: An Introduction to Verification and Semantics  (Gumb 1989).  
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  20.2.2 Temporal, Modal, and Dynamic Logics 

 Other extensions of classical logic include temporal logic, modal logic, and dynamic 

logic.  Logics of Time and Computation  (Goldblatt 1992) is a survey of these.  Logic 
in Computer Science: Modelling and Reasoning about Systems  (Huth, Ryan 2000) 

extends classical logic in several ways and is very readable. Dynamic logic is covered 

in great detail in  Dynamic Logic  (Harel, Kozen, Tiuryn 2000).   

  20.3 Rivals to Classical Logic  

 Rivals to classical logic include multi-valued logic, intuitionistic logic, and fuzzy 

logic.  Logics for Artificial Intelligence  (Turner 1984) discusses both of these. 

 Deviant Logic Fuzzy Logic: Beyond the Formalism  (Haack 1996) discusses several 

rivals to classical logic from the perspective of philosophy rather than computer 

science. Perhaps the most interesting rival to classical logic is quantum logic, as is 

now being developed for quantum computers and quantum computer programming, 

discussed below.  

  20.4 Applications of Logic to Computing or Computing to Logic  

  20.4.1 Logic Circuits 

 Truth functional logic is central to the design of logic circuits for computers. 

Discussions of this can be found in most introductory computer science books, e.g. 

 Foundations of Computer Science  (Aho, Ullman 2004).  

  20.4.2 3-Valued Logic and SQL 

 SQL statements involving relational databases with null data fields seem to violate 

the law of excluded middle. One way to deal with this is to use 3-valued logic, as 

described in  A Guide to the SQL Standard  (Date 1997) and  SQL Clearly Explained  

(Harrington 1998).  

  20.4.3 More on Expressing and Using Specifications 

 Using logic in aid of writing problem and program specifications and using these 

in aid of writing provably correct programs is discussed in  Software Specification: 
A Comparison of Formal Methods  (Gannon, Purtilo, Zelkowitz 1994),  The Way of Z: 
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Practical Programming with Formal Methods  (Jacky 1997), S pecifying Systems: 
The TLA + Language and Tools for Hardware and Software Engineers  (Lamport 

2003) and  Software Blueprints: Lightweight Uses of Logic in Conceptual Modelling  

(Robertson, Agusti 1999). The process of making “correct by construction” pro-

grams is described in  Program Construction: Calculating Implementations from 
Specifications  (Backhouse 2003).  

  20.4.4 Logic Testing of Software 

 Many introductory programming books have a chapter on testing that often includes 

discussion of various logic based “coverages.” Most texts on software testing dis-

cuss logic based testing procedures. Several of these are discussed in Boris Beizer’s 

classic  Software Testing Techniques  (Beizer 1990).  

  20.4.5 Computability and Algorithmic Unsolvability 

 The question of what can and what cannot be computed by means of a computer 

program is a fundamental issue in computer science. Among many interesting 

books on this topic are  Solvable Cases of the Decision Problem  (Ackermann 1962), 

 Computability and Logic  (Boolos, Jeffrey 1989),  Computability and Unsolvability  

(Davis 1973),  Mathematical Theory of Computation  (Manna 1974), and  Introduction 
to Languages, Machines and Logic: Computable Languages, Abstract Machines 
and Formal Logic  (Parkes 2002). For readers who want to read original sources, 

 The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems 
and Computable Functions  (Davis 2004) is a collection of classic papers.  

  20.4.6 AI and Computer Aided Reasoning 

 Various computer reasoning programs have been written, mostly in the Prolog 

(programming in logic) and Lisp (list processing) programming languages. They 

vary from artificial intelligence programs designed to mimic human reasoning 

without interaction with humans to computer aided reasoning systems designed to 

help people reason better. Early expectations of spectacular success with such pro-

grams were disappointed. Automated natural language translation, for example, 

turned out to be much harder than originally anticipated. However, expert systems 

that were confined to very narrow problems and often included some interaction 

with humans have been usefully deployed for many years. Moreover, slow but 

steady progress has been made on the hard problems so, for example, it is now 

possible to buy a natural language translation program for a few hundred dollars 

that does a moderately good job. 
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 More interesting perhaps are computer aided reasoning systems such as the 

ACL2 system described in  Computer-Aided Reasoning: An Approach  and 

 Computer-Aided Reasoning: ACL2 Case Studies  (Kaufmann, Manolios, Moore 

2002a, 2002b). This is a system which helps people state and prove theorems 

whose proofs are mechanically verifiable. 

  The Art of Prolog  (Sterling 1994) is a classic Prolog text.  Expert Systems: 
Principles and Programming  (Giarrantano 2005) is a wide-ranging discussion of 

AI programming which includes a free AI programming language, CLIPS, and has 

a nice appendix on “Software Resources.”.  Probabilistic Reasoning in Intelligent 
Systems: Networks and Plausible Inference  (Pearl 1988) has a good discussion of 

reasoning under uncertainty.  

  20.4.7 Quantum Computing and Programming 

 Quantum computing is a very rapidly developing field even by computer industry 

standards. Hardly a week goes by without an announcement of some new develop-

ment in the search for ways to make practical quantum computers. Interesting new 

algorithms appear much less frequently. However, several recently developed quan-

tum programming languages may help people develop new algorithms. 

 General background in quantum physics that should be accessible to readers of 

this book can be found in  The Odd Quantum  (Treiman 2002) and  Paradox Lost: 
Images of the Quantum  (Wallace 1996). 

 Among interesting popularizations of quantum computing are  Minds, Machines, 
and the Multiverse  (Brown 2002),  A Shortcut Through Time  (Johnson 2003), 

 Entangled World: The Fascination of Quantum Information and Computation  

(Jurgen 2006), and  Programming the Universe  (Lloyd 2006). 

 Seriously technical but still “introductory” are  Principles of Quantum 
Computation and Information, Volume I: Introductory Concepts  (Benenti, Casati, 

Strini 2005) and the very widely cited  Quantum Computation and Quantum 
Information  (Nielsen, Chuang 2000).   

  20.5 Programming Challenges  

 For software developers, writing software to implement logical procedures described 

in some parts of this book should be an interesting and instructive challenge. Listed 

below are some programming challenges (PCs) you might consider, along with a 

few remarks about them. Assume that each of the PC statements below begins with 

“Write a program in your favorite programming language that” 

 PC1.  Given a statement expressed in English as input, will give a correct logical 

English abbreviation of it as output. 
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 This is an extremely hard problem. Because English is so complicated and subtle 

I would strongly advise you against trying to write such a program, although you 

might learn a lot while trying and failing. However, especially if you are interested 

in natural languages, you might try to define a sufficiently small subset of English 

vocabulary and grammar in which users could express statements to be used as 

input to your program. Your program should give correct logical English abbreviations 

of them as output. Using restricted subsets of English to write instructions in some-

thing resembling English was part of the idea behind COBOL and SQL, which at 

one point was called “structured English Query Language”.” The challenge here is 

to express statements, not instructions. Suggestion: start with an extremely limited 

subset of English with no logical variables and no quantifiers. 

  PC2.  Given a character string, determine whether it is a tff . This and the next 

challenge are closely related. 

  PC3.  Given a tff, identify its parts, i.e. identify its name symbols, predicate symbols, 

variables, logical functions, etc. 

  PC4.  Given a tff and an assignment of truth values for its elementary statements, 

determine the truth value of the statement. 

  PC5. Given a tff, make and display a truth table for it. 

  PC6. Given a tff, determine whether it is TF-true, TF-false, or TF-contingent. 

  PC7.  Given the tffs of an argument, determine whether the argument is TF-valid, 

TF-inconsistent, or TF-contingent. 

  PC8.  Given two tffs and a rule of inference, determine whether the second tff 

follows from the first by means of that rule of inference. 

  PC9.  Given a small set of tffs and a small set of rules of inference, apply those rules 

of inference to generate a small set of new correct logical consequence tffs. 

 PC10.  Given a set of tffs, determine whether it is redundant and enumerate each tff 

that is redundant with respect to the others. 

 PC11.  Given a proof expressed in some standard form and given a set of axioms 

and rules of inference, determine whether that proof is correct. 

 PC12.  Given an argument, determine whether it is or is not TF-valid, i.e. find a 

decision procedure for truth functional validity. 

 PC13.  Given an argument find a formal proof (using rules of inference) that the 

argument form is TF-valid valid or find a truth functional interpretation in 

which all the premises are true and the conclusion is false. 

  All the challenges above had to do with truth functional logic. The next 

few have to do with quantificational logic. You will need to use information 

not covered in this book to do some parts of them. PC14, 15 and 16 are much 

harder than PC1 –13 and some parts of PC16 are impossible. 

 PC14.  See how far you can get repeating PC1–PC13 with syllogisms and substitut-

ing logical concepts such as L-true, L-false, L-contingent, L-valid, etc. 

where appropriate. This is a special case of PC15. Syllogisms are discussed 

in many introductory logic texts, e.g. (Copi, Cohen 2005). 

 PC15.  See how far you can get repeating PC1–PC13 with expressions involving 

logical variables, predicates, and quantifiers but in which only 1-place 
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predicates are allowed (the monadic predicate calculus) and substituting 

logical concepts such as L-true, L-false, L-contingent, L-valid, etc. where 

appropriate. 

 PC16.  See how far you can get repeating PC1-–PC13 with expressions involving 

logical variables, predicates of any degree, and quantifiers and substituting 

logical concepts such as L-true, L-false, L-contingent, L-valid, etc. where 

appropriate.     



         Solutions to Selected Exercises      

  Chapter 1   

 Exercise 1 .  For a–d, use the logical English abbreviations described below to 

transform the English statements into logical English

 Grammatical category  English  Logical English 

 Name  Bob  b 

 Name  Alice  a 

 1-place predicate  …is tall   T
1
 (…) 

 2-place predicate  is taller than…   T
2
 (…, …) 

 (a) Atomic statement  Alice is tall   T
1
 (a) 

 (c) Atomic statement  Alice is taller than Bob   T
2
 (a, b) 

  Exercise 2 .  For a–d, use the logical English abbreviations described below to 

transform the English statements into logical English

 Grammatical category  English  Logical English 

 Name  Samuel Clemens  a 

 Name  Mark Twain  b 

 2-place predicate  …is identical to…  … = … 

 (a) Atomic statement  Mark Twain is Samuel Clemens  b = a 

 (c) Atomic statement  Mark Twain is Mark Twain  b = b 

  Exercise 3 .  For a–h, use the logical English abbreviations described below to 

transform the English statements into logical English

 Grammatical category  English  Logical English 

 Name  Alice  a 

 Name  Bob  b 

 Name  2  c 
2
  

 Name  3  c 
3
  

 Name  5  c 
5
  

 1-place predicate  …is tall  T 
1
 (…) 

 2-place predicate  …is taller than…  I(…, …) 
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 Grammatical category  English  Logical English 

 2-place predicate  …is identical to…  … = … 

 2-place predicate  …is larger than…  L(…, …) 

 (a) Atomic statement  Alice is taller than Bob  I(a, b) 

 (c) Atomic statement  Alice is identical to Alice  a = a 

 (e) Atomic statement  2 is larger than 3  L(c 
2
 , c 

3
 ) 

 (g) Atomic statement  3 is larger than 5  L(c 
3
 , c 

5
 ) 

 (h) Atomic statement  5 is larger than 3  L(c 
5
 , c 

3
 ) 

  Exercise 4 .  For a– q, use the logical English abbreviations described below to 

transform the English statements into logical English. When using “f” and “g” 

for addition and multiplication, use prefix notation. When using “ + “and “*” for 

addition and multiplication, use infix notation.

 Grammatical category  English  Logical English 

 Name  Bob  b 

 Name  Alice  a 

 Name  Sam  s 

 Name  Mark  d 

 1-place predicate  …is tall  T 
1(…)

  

 2-place predicate  …is taller than…  T 
2
 (…, …) 

 2-place predicate  …is identical to…  … = … 

 2-place predicate  …is the father of…  fatherOf(…, …) 

 Name  2  2 

 Name  3  3 

 Name  5  5 

 Math function name  Plus  f 

 Math function name  Times  g 

 (a) Atomic statement  Alice is Alice  a = a 

 (c) Atomic statement  Bob is taller than Mark  T 
2
 (b, d) 

 (e) Atomic statement  Sam is tall  T 
1
 (s) 

 (g) Def. description  3 plus 2  f(3, 2) 

 (i) Def. description  2 plus (3 plus 5)  f(2, f(3,5)) 

 (k) Atomic statement  2 plus (3 times 3) is identical to 

(2 plus 3) times 3 

 f(2,g(3, 3) = g(f(2, 3), 3) 

 (m) Def. description  (2 plus 3) times 3  g(f(2, 3), 3) 

 (o) Def. description  3 + 5  f(3, 5) 

 (q) Atomic statement  2 + (3 * 5) = (3 + 2) * 5  f(2, g(3, 5)) = g(f(3, 2), 5) 
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  Chapter 2  

  Exercise 1 .  For each part, identify the missing grammatical category and use the 

logic notation described below to transform the English statements into logical 

English.

 Grammatical category  English  Logical English 

 Statement  a = 3  A 

 Statement  b = 5  B 

 Statement  a + b = 8  C 

 (a) Negation  not (a = 3)  (~A) 

 (c) Conjunction  a = 3 and b = 5  (A ∧ B) 

 (e) Conditional  If a = 3 then b = 5  (A → B) 

 (g) Conditional  If a = 3 or b = 5 then a + b = 8  ((A ∨ B) → C) 

 (i) Conditional  If a not = 3 and b not = 5 then a + b not = 8  (((~A) ∧ (~B))→ (~C)) 

  Exercise 2 .  Fully restore parentheses to the following logical English notations. 

Suggestion: work from the inside out.

 (a) P ∨ Q ∧ R  P ∨ (Q ∧ R) ∧ has higher precedence than ∨ 

 (P ∨ (Q ∧ R)) Restore outer parentheses 

 (c) P → Q ∨ R  P → (Q ∨ R) ∨ has higher precedence than → 

 (P → (Q ∨ R)) Restore outer parentheses 

 (e) (p ∨ q) ∨ r  ((p ∨ q) ∨ r) restore outer parentheses 

 (g) ~P → ~Q ∨ R  (~P) → (~Q) ∨ R ~ has highest precedence 

 (~P) → ((~Q) ∨ R) ∨ higher than → 

 ((~P) → ((~Q) ∨ R)) Restore outer parentheses 

 (i) ~P ∧ Q ∨ R → S ↔ T  (~P) ∧ Q ∨ R → S ↔ T ~ has highest precedence 

 ((~P) ∧ Q) ∨ R → S ↔ T ∧ has next highest 

 (((~P) ∧ Q) ∨ R) → S ↔ T ∨ is next 

 ((((~P) ∧ Q) ∨ R) → S) ↔ T → is next 

 (((((~P) ∧ Q) ∨ R) → S) ↔ T) Restore outer parens. 

  Exercise 3 .  Use the following statement letters to transform each of the English 

statements below into logical English. Use parenthesis dropping.

 English  English logical 

 The program compiled correctly  P 

 The file was sorted  S 

 The file was corrupted  C 

 There was an error in the sort routine  E 

 The program ran correctly  R 

 The error flag was set at line 4,008  F 

 a < b  L 
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   (a)    If the program ran correctly then the file was sorted.

   R → S     

   (c)    If the error flag was set at line 4,008 then the file was corrupted.

   F → C     

   (e)    A sufficient condition for the file being corrupted is that the error flag was set 

at line 4,008.

   F → C     

   (g)    A necessary and sufficient condition for the file being corrupted is that the error 

flag was set at line 4,008.

   F ↔ C     

   (i)    If the program compiled correctly and the file was sorted then the program ran 

correctly or a < b.

   P ∧ S → R ∨ L     

   (k)    If a < b and the file was sorted correctly then the program ran correctly if and 

only if there was not an error in the sort routine.

   L ∧ S → (R ↔ ~E)         

  Exercise 4 .  Use the following statement letters to transform each of the logical 

English statements below into English.

 Logical English  English 

 P  The program compiled correctly 

 S  The file was sorted 

 C  The file was corrupted 

 E  There was an error in the sort routine 

 R  The program ran correctly 

 F  The error flag was set at line 4,008 

 L  a < b

 (a) R → P  If the program ran correctly then it compiled correctly 

 (c) ~P → ~R  If the program did not compile correctly then it did not run correctly 

 (e) C ∨ E →  ~P If the file was corrupted or there was an error in the sort routine then 

the program did not compile correctly 



Solutions to Selected Exercises 245

  Exercise 5 .  Use the following statement letters to transform each of the English 

statements below into logical English.

 English  Logical English 

 6 is a domain value of the problem  S 

 1 is a domain value of the problem  O 

 0 is the solution value of the problem  N 

 The domain data is sorted small to large  A 

 The domain data is sorted large to small  D 

   (a)    If 1 is a domain value of the problem then the domain data is not sorted small 

to large or large to small.

    O → ~(A ∨ D)  

   or O → ~A ∧ ~D     

   (c)    If a domain value of the problem is not 6 and is not 1 then the domain data is 

not sorted.

    ~S ∧ ~O → ~A ∧ ~D  

  or ~S ∧ ~O → ~(A ∨ D)     

   (e)    If the domain data is sorted large to small or small to large then the solution 

value of the problem is 0.

 3   A ∨ D → N     

   (g)    A sufficient condition for the solution value of the problem to be 0 is that a 

domain value of the problem is 6 if and only if the domain data is sorted small 

to large.

    (S ↔ A) → N         

  Exercise 6 .  Use the following statement letters to transform each of the English 

statements below into logical English.

 Logical English  English 

 S  6 is a domain value of the problem 

 O  1 is a domain value of the problem 

 N  0 is the solution value of the problem 

 A  The domain data is sorted small to large 

 D  The domain data is sorted large to small 

 (a) N ∨ ~N  0 is the solution value of the problem or 0 is not the solution value of the 

problem 

 (c) S → ~O  If 6 is a domain value of the problem then 1 is not a domain value of the 

problem 

 (e) N → S ∨ O  If 0 is a solution value of the problem then 6 is a domain value of the 

problem or 1 is a domain value of the problem 
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  Chapter 3  

  Exercise 1 .  Identify the variables in the following statements and conditions.

 Statement or condition  Variables 

 (a) In general, if it looks like a duck and 
walks like a duck then it is a duck 

 It (twice) (Note that “a duck” is an indefi-
nite description) 

 (c) 3 < 5 + x  X 

 (e) He who hesitates is lost  He, “He who hesitates” is a description 

 (g) x < 5  X 

 (i) c = a + z  Z 

  Exercise 2 .  Determine which of the following are conditions and which are not. 

Explain why your answer is correct. If an expression is a condition tell whether it 

is true of single things, pairs of things, triples of things, or what.

 (a) a = a  Not a condition 

 (c) x = x  Condition, true of individual things 

 (e) A(x, x)  Condition, true of individual things 

 (g) A(x, b, z)  Condition, true of pairs of things 

 (i) x > y ∨ y > z  Condition, true of triples of things 

  Exercise 3 .  For each of the following statements create two different conditions by 

replacing one or more names or descriptions with variables.

 Statement  Conditions 

 (a) a < 3 ∨ a = 3 ∨ a > 3  x < 3 ∨ x = 3 ∨ x > 3 

 z < 3 ∨ a = 3 ∨ a > 3 

 (c) Jack and Jill went up the hill  Jack and x went up the hill 

x and Jill went up the hill 

 (e) 3 + 5 = 5 + 3  3 + x = x + 3 

 x + y = y + x 

  Exercise 4 .  For each of the following conditions, create two different statements by 

replacing all variables with names or descriptions. Assume that a and b are names.

 Condition  Statements 

 (a) x = y ∧ y = x  1 + 2 = 3 ∧ 3 = 1 + 2 

 a = b ∧ b = a 

 (c) ____ was absent  Jack was absent 

 Jill was absent 

 (e) x > 99 ∨ z < 5  100 > 99 ∨ 14 – b < 5 

 a > 99 ∨ 1 < b 
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  Exercise 5 .  For each description below, make two different open descriptions.

 Description  Open descriptions 

 (a) The present king of France  The present king of ______ 

The present king of x 

 (c) 3 + 5  x + 5 

 3 + x 

 (e) A person in this room  A _____ in this room 

a person in this _____ 

 (g) Some record from file 77  Some record from x 

 Some record from y 

  Exercise 6 .  For each of the following open descriptions, create two different 

descriptions by replacing all the variables with names or descriptions. Remember 

that all instances of a given variable should be replaced by the same name or 

description.

 (a) y + x  3 + 2  1 + 33 

 (c) (x 2 ) 3   (3 2 ) 3   (77 2 ) 3  

  Exercise 7 .  Using P(x) to abbreviate “x is a program” and B(x) to abbreviate “x has 

bugs” go through the transformation process described above using “All programs 

have bugs.” in place of “All humans are mortal.”

 English  Logical English 

 All programs have bugs  ∀x(If x is a program then x has bugs) 

 ∀x(If P(x) then B(x)) 

 ∀x(P(x) → B(x)) 

  Exercise 9 .  Using the same abbreviations, write logical English for the following 

statements.

 English  Logical English 

 (a) Something is useful  ∃x(U(x)) 

 (c) Something is bigger than a  ∃x(B(x, a)) 

 (e) Everything is bigger than something  ∀x∃y(B(x, y)) 

 (g) A is bigger than everything or a is bigger than 

nothing 

 ∀x(B(a, x)) ∨ ∀x(~B(a, x)) 

 or ∀x(B(a x)) ∨ ~∃x(B(a, x)) 

 (i) If some program is useful then all programs 

are useful 

 ∃x(P(x) ∧ U(x)) → ∀x(P(x) → U(x)) 

 or P(a) ∧ U(a) → ∀x(P(x) → U(x)) 

 (k) If a is a program and a is not useful then not all 

 programs are useful 

 P(a) ∧ ~U(a) → ~∀x(P(x) → U(x)) 

 or P(a) ∧ ~U(a) → ∃x(P(x) ∧ ~U(x)) 
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  Exercise 10 .  Using the abbreviations as above transform the following logical 

English notation into English .

 Logical English  English 

 (a) ~∃x(U(x)) → ∃x(~U(x))  If nothing is useful then there is something which is not useful 

 (c) ∃x(B(x, b)) ∧ B(a, b)  Something is bigger than b and a is bigger than b 

 (e) ~∃x(U(x)) → ∀x(~U(x))  If there is nothing useful then everything is not useful 
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  Chapter 4  

  Exercise 1 .  For each passage below, analyze the passage in the way Examples 7–12 

were analyzed. Give reasons for your claims.

   (a)    If today is Friday then today is payday. 

 Analysis: This is not an argument, it is a conditional statement.  

   (c)    If x were 5 at line 20 then the program would have crashed, and it did. So, prob-

ably, x was 5 at line 20. 

 Analysis: An inductive argument, with “so” as conclusion indicator. It is induc-

tive because the conclusion is asserted to only “probably” follow from the 

premises.

   P 
1
 : If x were 5 at line 20 then the program would have crashed.  

  P 
2
 : It did (crash).  

  C: (Probably) x was 5 at line 20.     

   (d)    If the program was run yesterday then a run log entry for it would have been 

made. No run log entry for it was made. Moreover, if the program was not run 

yesterday the records in it are not current. 

 Hence the records in it are not current. 

 Analysis: This is a complex deductive argument with “hence” as a conclusion indi-

cator. It has an implicit conclusion which is an implicit premise for another 

argument.

   P 
1
 :  If the program was run yesterday then a run log entry for it would have 

been made.  

  P 
2
 : No run log entry for it was made.  

  C 
1
 : (implicit) The program was not run yesterday.  

  P 
3
 : (implicit) The program was not run yesterday.  

  P 
4
 :  If the program was not run yesterday then the records in it are not 

current.  

  C 
2
 : The records in it are not current.     

      Exercise 2 .  Use logical English to express the structure of each of the arguments 

below. If the argument is simple then use the format shown in Examples 13 and 14. 

If the argument is compound then use the tree structure shown in Example 16.

   (a)    Since today is Monday, tomorrow must be Tuesday.  

    MonToday  

   TueTomorrow     

   (c)    It will probably rain here soon, since the sky is dark and it is raining just west 

of here.  

    DarkSky ∧ RainWest  

   ProbRain     
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   (e)    Since the file is sorted, it must be in ascending or descending order. It is not in 

ascending order. Hence it is in descending order.  

    Fsorted  

   Asc ∨ Dsc ~ Asc  

   Dsc     

   (g)    I have tested this program with hundreds of test cases and it worked correctly 

in each case. Hence, this program is correct.  

    PTested ∧ PWorked  

   PCorrect     

   (i)    a*b > 0 because either a > 0 and b > 0 or else a < 0 and b < 0. Since c < 

0 and a*b > 0, it follows that c*a*b < 0. And since d is also < 0, d*c*a*b 

must be > 0.

    (a > 0 ∧ b > 0)∨(a < 0 ∧ b < 0)

 a*b > 0 c < 0

 c*a*b<0 d < 0

 d*c*b*a > 0           
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  Chapter 5  

  Exercise 1 .  Suppose A = {2, 4, 6, 8}, B = {1, 3, 5, 7}, and C = {1, 2. 3}. 

 Use set notation to express the result of performing the following operations.

   (a)     A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8}  

   (c)     A ∩ C = {2}  

   (e)     A − C = {4, 6, 8}  

   (g)     C × A =  {<1, 2>,<1, 4>, <1, 6>, <1, 8>, <2, 2>, <2, 4>, <2, 6>, <2, 8> ,<3, 

2>, <3, 4>, <3, 6>, <3, 8>}      

  Exercise 2 .  Write each of the following using logical English notation. Use I(x) to 

abbreviate the condition that x is an integer, P(x) abbreviate the condition that x is a 

positive integer, and so on.

   (a)    The set of all integers.

    {x | I(x)}     

   (c)    b is an element of C.

    b ∈ C     

   (e)    The ordered pair <b, c> is an element of the product of sets F and G.

    <b, c> ∈ F × G         

  Exercise 3 .  Use English to express interpretations of the following expressions of 

set theory.

   (a)    b ∈ G b is an element of G.  

   (c)    B = C ↔ (B ⊂ C) ∧ (C ⊂ B) B equals c if and only if B is a subset of C and C 

is a subset of B.  

   (e)    <a, b> ∈ B × C The ordered pair <a, b> is an element of the product of B and C.      

  Exercise 4 .  For each pair of sequences below determine whether they are identical 

considered as sequences, as bags, and as sets.

 Sequence  Bag  Set 

 (a) <1, 1 + 1, 1 + 1 + 1>  <1, 2, 3>  Yes  Yes  Yes 

 (c) <1, 1 + 1, 1 + 1 + 1>  <1, 2, 2, 3>  No  No  Yes 

 (e) <1, 2, 3>  <3, 2, 1>  No  Yes  Yes 

  Exercise 5 .  For each of the following determine whether the statement is true or 

false, and say why.

 (a) <3, 5> ∈ <  True, 3 < 5 

 (c) <3, 3> ∈ <  False, 3 ~ < 3 

 (e) <1, 1 + 1> ∈ <  True, 1 < 1 + 1 
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  Exercise 6 .  For each of the following, determine the domain and range of the 

relation, and express each using logical English. Use I(x) to represent the property 

of being an integer, R(x) to represent the property of being a rational number, and 

P(x) to represent the property of being a person. Invent and explain your own 

notation for the less than relation, the parent of relation, and so on.

   (a)    The less than relation between integers (positive, zero, and negative).

    Domain = {x | I(x) ∧ ∃y(I(y) ∧ x < y} = the set of all integers  

   Range = {y | I(y) ∧ ∃x(I(x) ∧ x < y} = the set of all integers.     

   (c)    The “is a parent of” relation between people.

    Domain = {x | P(x) ∧ ∃y(P(y) ∧ x is the parent of y}

    = {all parents}     

   Range = {y | P(y) ∧ ∃x(P(x) ∧ x is a parent of y}

     = {all children}  

    = {all people}        

   (e)     The “likes” relation between people

    Domain = {x | P(x) ∧ ∃y(P(y) ∧ x likes y)}

    = {all people who like someone}     

    Range = {y | P(y) ∧ ∃x(P(x) ∧ x likes y)}

    = {all people who are liked by someone}        

   (g)    The “is taller than” relation among basketball players.

    Domain = {x | BBP(y) ∧ ∃y(BBP(y) ∧ x is taller than y)}

    = {all people who are taller than someone}  

   = {all but the shortest people}     

    Range = {y | BBP(x) ∧ ∃x(BBP(x) ∧ x is taller than y)}

    = {all people who are shorter than someone}  

   = {all but the tallest people}            

  Exercise 7 .  For each of the following relations, determine its domain and its range. 

Then determine whether it is a functional relation.

   (a)    The relation R(x, y) such that x and y are people and y is a (biological) 

child of x.

    Domain is set of all people who are parents.  

   Range is set of all people, since every person is a child.  

   Not functional, since specifying a parent does not uniquely determine a child.     

   (c)    The relation R(x, y) such that x and y are people and y is the current husband 

of x in a monogamous society.

    Domain is set of all current wives.  

   Range is set of all current husbands.  

    Is functional since in a monogamous society specifying a wife uniquely 

 determines a husband.     
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   (e)    The relation R(x, y) such that x and y are positive integers and y is a factor of x.

   Domain is set of all positive integers, since all positive integers have 1 and 

themselves as factors.  

  Range is set of all positive integers, since all positive integers are factors 

of some positive integer, e.g. themselves.  

   Not relational, since all positive integers have more than one factor.     

   (g)    The relation R(<x, y>, z) with x, y, and z integers and z = x or z = y.

    Domain is set of all pairs of integers.  

   Range is set of all integers.  

   Not functional since specifying <x, y> does not uniquely determine z.          
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  Chapter 6  

  Exercise 1 .  Describe the domain and range for each of the following problem 

specifications. Tell how many elements are in the domain and in the range. Say 

what a program that solved the problem would do.

   (a)    The problem of alphabetizing a specific list of English words.

    Domain = the set whose only element is that list of words.  

  Range = the set whose only element is that list of words in alphabetic 

order.  

  Domain and range have one element each.  

  A program that solved this problem would take the specified list of 

English words as input and give that list, in alphabetic order, as 

output.     

   (c)    The problem of eliminating duplicates from a specific list of numbers.

   Domain = the set whose only element is that list of numbers.  

  Range = the set whose only element is that list of numbers with duplicates 

removed.  

  Domain and range have one element each.  

  A program that solved this problem would take the specified list of num-

bers as input and give that list, with duplicates removed, as output.         

  Exercise 3 .  Look for examples of vagueness and ambiguity in the problem 

specifications described in Sect. 1 above. 

 Note: Correct answers may differ. 

 The problem of finding the square root of any positive integer might be said to 

be functionally ambiguous, since each positive integer has two square roots, e.g. 2 

and –2 are both sometimes called square roots of 4. However, in most contexts, the 

expression “the square root” of a number is intended to refer to the positive square 

root of that number, so no ambiguity would be involved. Another possible difficulty 

is that the number of digits required to be shown for a square root is not specified. 

The square root of 2 for example has infinitely many decimal digits, any finite 

number of digits is only an approximation. This could be viewed as a vagueness in 

the specification or an incompleteness in the specification. 

 There is no defect with the problem of finding the smallest positive integer larger 

than 7. 

 There is a bit of ambiguity in the specification of the problem of sorting a specific 

list of names. Presumably this means sorted in alphabetic order but in some contexts, 

sorting on length might be what is intended. Another ambiguity is that the specifica-

tion does not say whether the names are to be sorted on last name then the rest of 

the name, or are they to be sorted first name and the rest of the name, e.g. which 

comes first “Adam Zimmer” or “Zbignew Abernathy”. There is also some vagueness 

in saying exactly what counts as alphabetic order, for example in the case of names 
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with nonstandard symbols in them. There are probably some standard ways of speci-

fying this, but how many specifiers or programmers know what it is, or even where 

to find them. If there is more than one, which one should be used. Perhaps the order 

to use is that specified by Unicode numeric codes, but perhaps not. 

 The problem of sorting arbitrary lists of names has much the same problems as 

the problem of sorting a specified list of names. 

 The problem of finding the larger of any ordered pair of numbers is very clear, 

although nothing is said explicitly about what to do if the two numbers of the pair 

are the same. Are both “larger” or is there no “larger” one? 

 There is little to complain about in the specification of the problem of finding a 

customer record from a specific file, except perhaps to say how the record is to be 

organized and formatted for output. This could be viewed as an example of 

incompleteness. 

 The problems of Exercise 1 are largely free of defects.  

  Exercise 5 .  Write the corresponding expression for MAX3. 

   w = MAX3(x, y, z)  ↔ (w = x ∨ w = y ∨ w = z)

   ∧ w > = x ∧ w > = y ∧ w > = z        

  Exercise 7 .  Express the following problem using logic notation. Determine what 

class a student belongs to as a function of the number of semester hours of credit 

earned where a student with <=30 credits is a freshman, 31–60 credits is a sophomore, 

61–90 credits is a junior, and >90 credits is a senior. There is no upper limit on the 

number of credits a student can earn. Use the abbreviations from the previous 

examples. 

   DOM(x) ↔ I(x) ∧ 0 < = x  

  SOL(x, y) ↔ ((x > 90 ∨ y = “senior”)

   ∨ (61 < = x ∧ x < = 90 ∧ y = “junior”)  

  ∨ (31 < = x ∧ x < = 60 ∧ y = “sophomore”)  

  ∨ (x < = 30 ∧ y = “freshman”))        

  Exercise 8 .  Express the following problem specifications using logic notation. Use 

the following abbreviations. Invent others if you need them.

 DOM(x)  x is in the domain of the problem 

 SOL(x, y)  y is the solution of the problem for domain element x 

 NUMSEQ(z)  z is a finite sequence of numbers 

 MIN(y, z)  y is the minimum of the elements of sequence of numbers z 

 ASORT(y)  y is sorted in ascending order 

 DSORT(y)  y is sorted in descending order 
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   (a)    The problem of finding the minimum of a finite sequence of numbers.

   DOM(x) ↔ NUMSEQ(x)  

  SOL(x, y) ↔ MIN(y, z)     

   (c)    The problem of determining whether one finite sequence of numbers is longer 

than another finite sequence of numbers. 

   Let LEN(x) represent the length of sequence x. Then the problem can be 

represented by:  

   DOM(x) ↔ x = < x 
1
 , x 

2
 > ∧ NUMSEQ(x 

1
 ) ∧ NUMSEQ(x 

2
 )  

  SOL(x, y) ↔ (y = “yes” ∧ ~(LEN(x 
1
 ) = LEN(x 

2
 )))  

             ∨(y = “no” ∧ (LEN(x 
1
 ) = LEN(x 

2
 )))          
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  Chapter 7  

  Exercise 1 .  Write pseudocode for each of the following algorithms expressed in 

English. Note your solutions do not have to be exactly the same as the given 

solutions, but they should be similar and equivalent.

   (a)    To find the smallest of three integers first find the smaller of the first two then 

find the smaller of that and the third.

   Algorithm smallestOf3(a, b, c)  

  # Pre: a, b, and c are integers.  

  # Post: Returns the smallest of a, b, and c.

     If (a < b) then

        smaller ← a     

     else

        smaller ← b     

     endif  

     If (c < smaller) then

        Return c     

     else

        Return smaller     

     endif     

  endAlgorithm     

   (c)    To find the smallest of a nonempty list of integers, examine the integers in order 

from beginning to end, keeping track of the smallest integer examined so far. 

At the end it will be the smallest in the list.

   Algorithm findMin(L)  

  # Pre: L is a nonempty list of integers, L[0], L[1], …  

  # Post: Returns the smallest element of L.

     smallest < L[0]  # Initially L[0] is smallest so far.  

    len ← length of L  

    I ← 1  

    While (I ← len) do

        If (L[I] < smallest) then

           smallest ← L[I]     

        endif  

        I ← I + 1     

     endwhile  

     Return smallest     

   endAlgorithm     

   (e)    To determine whether a nonempty list of numbers is sorted small to large look 

for pairs of numbers in the list which are out of order, i.e. larger first and 
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smaller second. If no such pairs are found then the list is sorted from small to 

large.

   Algorithm aSorted(L)  

  # Pre: L is a nonempty list of numbers.  

  # Post: Returns true if L is sorted in ascending order, false otherwise.  

  # Assumes a list of length 1 is in ascending order.

     len ← length of L  

    If (len = 1) then

        Return true  

    else

        I ← 0  

       While (I < len – 1) do

           If (L[I] > L[I + 1]) then

              Return false     

           endif     

        I ← I + 1  

        endwhile  

        Return true     

    endif     

  endAlgorithm        

   (g)    To determine whether x is in the interval [a, b] or in [c, d] but not in the inter-

section of the two intervals, first determine whether x is in [a, b] then determine 

whether x is in [c, d]. If x is in either or both intervals then the condition is false, 

otherwise the condition is true.

   Algorithm symmetricDifference(x, a, b, c, d)  

  # Pre: x, a, b, c, and d are real numbers with a < = b and c < = d.  

  # Post: Returns true if x is in [a, b] or in [c, d] but not in both.

     If (((a < = x) and (x < = b)) or ((c < = x) and (x < = d))) and  

    not((a < = x) and (x < = b)) and ((c < = x) and (x < = d)))) then

         Return true     

    else

         Return false     

    endif     

  endAlgorithm          
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  Chapter 8  

  Exercise 1 .  Determine which of the statements below are materially equivalent. 

Explain your answers. Hint: first determine which statements are true and which are 

false. Assume the numbers referred to here are all nonnegative integers.

   (a)    There are odd numbers.  

   (c)    If a number is even and prime than it is not odd.  

   (e)    Every number is odd.  

   (g)    Every number identical to 3 is prime.  

   (i)    The smallest prime number is 2.     

 Since a, c, g, and I are all true, they are all materially equivalent to each other.  

  Exercise 2 .  Assume that P is true and Q, is false. For each pair of statements below 

determine whether the one on the left is materially equivalent to the one on the 

right. Note that in each case this requires only a simple truth value calculation, not 

the construction of a whole truth table.

 (a) P  Q  No 

 (c) P and Q  Q  Yes 

  Exercise 3 .  Determine which of the statements below materially imply which 

others. Explain your solution.

   (a)    There are odd numbers.  

   (c)    If a number is even and prime than it is not odd.  

   (e)    Every number is odd.  

   (g)    Every number identical to 3 is prime.  

   (i)    The smallest prime number is 2.     

 Since a, c, g, and i are all true, each of them materially implies all those in that 

list, but none of them materially implies e. Since e is false, it materially implies all 

of them.  

  Exercise 4 .  Assume that P is true and Q, is false. For each pair of statements 

below determine whether the one on the left materially implies the one on the 

right. Then determine whether the one on the right materially implies the one on 

the left. Then determine whether the two statements are materially equivalent. 

Note that in each case this requires only a simple truth value calculation, not the 

construction of a whole truth table.         

a. P Q

T F no, yes, no

c. P or Q Q

T F no, yes, no
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  Exercise 5 .  Use the definitions above to determine which of the statements below 

are materially true and which are materially false.

   (a)    There are odd numbers.  

   (c)    If a number is even and prime than it is not odd.  

   (e)    Every number is odd.  

   (g)    Every number identical to 3 is prime.  

   (i)    The smallest prime number is 2.     

 In this case, using the definitions amounts to thinking about examples. 

 Materially true: a, c, g, i 

 Materially false: e  

  Exercise 6 .  In each case, say whether the statement is true of a finite or an infinite 

number of things. If it is true of a finite number of things then write the statement 

as a conjunction or disjunction. Assume that S = {2, 3, 4, 5}

   (a)    All prime numbers are odd.

   Infinite     

   (c)    Some prime numbers are odd.

   Infinite     

   (e)    All elements of S are prime numbers.

   Finite: 2 is prime ∧ 3 is prime ∧ 4 is prime ∧ 5 is prime     

   (g)    All prime numbers in S are odd.

   Finite: if 2 is prime then 2 is odd ∧ if 3 is prime then 3 is odd ∧ if 4 is 

prime then 4 is odd ∧ if 5 is prime then 5 is odd     

   (i)    All even numbers in S are prime.

   Infinite         

  Exercise 7 .  There are many possible solutions. Here is one.

   # Line 02 generates error message if ordinary evaluation of “or” is  

  # used. Prints “Shortcut used” and does not generate error  

  # message if shortcut evaluation is used.    

 01 x ← 1 

 02 If ((x = 1) or (x/0 = 5)) 

 03   Print “x/0 = 5 should generate error message” 

 04 Else 

 05   Print “Shortcut used” 

 06 Endif  

  Exercise 9 .  Do the following bitwise calculations. 

   (a)    not 11010110

   00101001     

   (c)      11010110

   or   01100101  

  11110111          
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  Chapter 9  

  Exercise 1 .  Do a similar calculation assuming that P, Q, and R are all true.

   1.     “not P”: not true is false.  

   3.     “R and (not P)”: true and false is false.  

   4.     “(not Q) or (R and (not P))”: false or false is false.      

  Exercise 3 .  Write expressions like Expressions 2, 3, and 4 above for each of the 

following statements. If the English is ambiguous about connectives, pick some 

reasonable order of evaluation and forge ahead.

   (a)    Today is Wednesday and it is raining and it is hot.

   (W and R) and H  

  (W ∧ R) ∧ H  

  W ∧ R ∧ H     

   (c)    Today is not Wednesday and it is not raining and it is not hot.

   ((not W) and (not R)) and (not H)  

  ((~W) ∧ (~R)) ∧ (~H)  

  ~W ∧ ~R ∧ ~H     

   (e)    Today is Wednesday and either it is not raining or it is not hot.

   W and ((not R) or (not H))  

  W ∧ ((~R) ∨ (~H))  

  W ∧ (~R ∨ ~H)     

   (g)    Today is Wednesday and it is not the case that it is raining or it is hot.

   W and (not (R or H))  

  W ∧ (~(R ∨ H))  

  W ∧ ~(R ∨ H)         

  Exercise 4 .  Finish the table below by inserting parentheses so that the connectives 

are evaluated in the order specified. Do not change the order of the connectives or 

the elementary statements.         

 order  statement

 not and or using precedence rule not using precedence rule

a.  1 2 3 not P and Q or R ((not P and Q) or P)

c.  2 1 3 not (P and Q) or R (not (P and Q)) or R

e.  3 1 2 not ((P and Q) or R) not ((P and Q) or R)

  Exercise 5 .  Make a truth table for each complex statement below. Indicate which 

is the final column.
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   (a)    ~(~P)        

P ~(~P)

T T

F F

 * main column  

   (c)     P ∨ (P ∧ Q)         

P Q P ∨ (P∧Q)

T T T T

T F T F

F T F F

F F F F

  * main column  

   (e)    (P ∨ Q) ∧ ~P        

P Q (P ∨ Q) ∧ ~P

T T T F F

T F T F F

F T T  T  T

F F F F F

   *main column 

   (g)    Q ∨ (~Q)        

Q Q ∨ (~Q)

T T T F

F F T T

 *main column 

   (i)    P ∧ (~P)        

P P ∧ (~P)

T T F F

F F F T

  *main column     

  Exercise 6 .  For each of the following, try to determine what you can about the truth 

values of the component statements in case the compound statement is true. Then 

check your answers by finding or constructing a truth table for each one.

   (a)    ~(~P) If ~(~P) is true then ~P must be false, so P must be true.         

P ~ (~ P)

T T F T

F F T F

   (c)    P ∨ (P ∧ Q) If P ∨ (P ∧ Q) is true then either P is true or P ∧ Q is true. If P were 

false, neither part would be true. So P must be true. Q can be true or false.         
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P Q P ∨ (P Ù Q)

T T T T

T F T F

F T F F

F F F F

   (e)    (P ∨ Q) ∧ ~P If (P ∨ Q) ∧ ~P is true than (P ∨ Q) must be true and ~P must 

be true. Hence P must be false. But if P is false and (P ∨ Q) is true then Q 

must be true.         

P Q (P ∨ Q)  Ù ~ P

T T T F F

T F T F F

F T T T T

F F F F T

   (g)    (Q ∨ (~Q)) If (Q ∨ (~Q)) is true than Q is true or ~Q is true, but this is the case 

no matter what. So (Q ∨ (~Q)) is true no matter whether Q is true or false.         

Q Q Ú ~ Q

T T F

F T T

   (i)    (Q ∨ ~P) ∧ P If (Q ∨ ~P) ∧ P is true then (Q ∨ ~P) must be true and P 

must be true. So P must be false. Hence in order for (Q ∨ ~P) to be true Q 

must be true.         

P Q (Q ∨ ~ P) Ù P
T T T F T

T F F F F

F T T T F

F F T T F

   (k)    (Q ∨ ~P) ∧ ~Q If (Q ∨ ~P) ∧ ~Q is true then (Q ∨ ~P) and ~Q must be true. 

Hence Q must be false. But if Q is false and (Q ∨ ~P) is true then ~P must be 

true, hence P must be false.             

P Q (Q ∨ ~P) Ù ~ Q

T T T F F F

T F F F F T

F T T T F F

F F T T T T

  Exercise 7 .  For each of the following, try to determine what you can about the truth 

values of the component statements in case the compound statement is false. Then 

check your answers by finding or constructing a truth table for each one.

   (a)    ~(~P) If ~(~P) is false then ~P must be true and hence P must be false.         
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P ~ (~ P)

T T F T

F F T F

   (c)    P ∨ (P ∧ Q) If P ∨ (P ∧ Q) is false then P must be false and (P ∧ Q) must 

also be false. But if P is false then (P ∧ Q) will be false no matter what truth 

value Q has.         

P Q P ∨ (P Ù Q)
T T T T

T F T F

F T F F

F F F F

   (e)    (P ∨ Q) ∧ ~P If (P ∨ Q) ∧ ~P is false then ~P is false (and P true) or (P ∨ Q) is false. 

And if P is true than (P ∨ Q) must be true. So if P is true, then (P ∨ Q) ∧ ~P is false 

no matter the truth value of Q. While if P is false then Q must also be false.         

P Q (P ∨ Q) Ù ~Q

T T T F F

T F T F F

F T T T T

F F F F T

   (g)    (Q ∨ (~Q)) If (Q ∨ (~Q)) is false then Q must be false and ~Q must be false. 

But this is impossible.         

Q Q ∨ ~Q

T T F

F T T

   (i)    (Q ∨ ~P) ∧ P If (Q ∨ ~P) ∧ P is false then either P is false or (Q ∨ ~P) is false. 

If P is true then the only way to make (Q ∨ ~P) false is for Q to be false.         

P Q (Q ∨ ~P) Ù P
T T T F T

T F F F F

F T T T F

F F T T F

   (k)    (Q ∨ ~P) ∧ ~Q if (Q ∨ ~P) ∧ ~Q is false then either Q must be true or (Q ∨~P) 

must be false. If Q is true then the truth value of P is irrelevant. If Q is false 

then P must be true in order for (Q ∨ ~P) to be false               

P Q (Q ∨ ~P) ∧ ~Q

T T T F F F

T F F F F T

F T T T F F

F F T T T T
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  Chapter 10  

  Exercise 1 .  Do a value trace table of just P and MIN for the following algorithm, 

with LIST = <7, 3, 5, 1>.  

   0 Algorithm FindMin(LIST,N)  

   # Preconditons: LIST is a list of N numbers with N >= 1.  

   # Postcondition: MIN is the smallest element of LIST.

   1.    P ← 1 # P points to the next element of LIST  

   2.    MIN ← LIST[P]  

   3.    While P < = N DO  

   4.     If LIST[P] < MIN Then MIN ← LIST[P] EndIf  

   5.     P ← P + 1  

   6.    Repeat  

   7.    Return MIN        

 EndAlgorithm 

 With LIST = <7, 3, 5, 1> and N = 4, trace P and MIN for FindMin.          

line P MIN Comments

0 ? ? Both are initially unassigned

1 1

2 1 7

3   1 < = 4, so enter loop

4   LIST[1] = 7 which is not < 7, so skip assignment

5 2

3   2 < = 4

4  3 LIST[2] = 3 < 7, so do the assignment

5 3

3   3 < = 4

4   LIST[3] = 5 which is not < 3, so skip assignment

5 4

3   4 < = 4

4  1 LIST[4] = 1 < 3, so do the assignment

5 5

3   5 is not < = 4, so exit loop

7   Done, so return
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  Exercise 3 .  Finish the trace table above.          

line x y z output comments

initially 3 5 7

1  3 6 7  ~(2 * 3 > 7), so y ← y + 1

2  13 6 7

3  13 6 7 This is silly 7 < 3 * 5 ∧ 13 > 6

4  13 6 7  13 < 3 * 6, so repeat.

5  18 6 7

6  18 7 7

7  18 7 7 18 7 7

4      18 < 3 * 7, so repeat.

5  23

6  8

7     23 8 7

4      23 < 3 * 8, so repeat.

5  28

6   9

7     28 9 7

4       28 not < 3 * 9 and ~x = y, so 

exit loop. Continue program.

  Exercise 5 .  Do a similar trace table but with x = 7, y = 5, z = 3          

line x y z output comments

initially 7 5 3

1      2 * 7 > 3, no assignment

2  8

3     This is silly 3 < 7 + 5 and 7 > 5

4      8 < 3 * 5, so repeat

5  13

6   6

7     13 6 3

4      13 < 3 * 15, so repeat

5  18

6   7

7     18 7 3

4      18 < 3 * 7, so repeat

5  23

6   8

7     23 8 3

4      23 < 3 * 8, so repeat

5  28

6   9

7     28 9 3

4      ~28 < 3 * 9, so exit and 

     continue program
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  Exercise 7  . 
   If (((a = 0) and not(b = 0)) or (b = 0 and not(a = 0))) then

   Print “yes”     

  else

   Print “no”     

  endif     

   (a)    If a and b are both = 0 before I, what will I print? Why?  

   (b)    If a and b are both = 1 before I, what will I print? Why?  

   (c)    If a = 0 and b = 7 before I, what will I print? Why?  

   (d)    If a = 0 before I and I prints “no” then what can you tell about the value of b 

before I? Explain.  

   (a)     

   1.    Before I, if a = b = 0 then not(b = 0) is false  

   2.    Hence ((a = 0) and not (b = 0)) is false.  

   3.    Similarly, if a = b = 0 then not(a = 0) is false.  

   4.    Hence ((b = 0) and not(a = 0)) is false.  

   5.    Hence (((a = 0) and not (b = 0)) or ((b = 0) and not(a = 0))) is false.  

   6.    Hence I’s condition is false.  

   7.    Hence I will print “no”.      

   (c)     

   1.    Before I, if a = 0 and b = 7 then (a = 0) is true and not(b = 0) is true.  

   2.    Hence ((a = 0) and not(b = 0)) is true.  

   3.    Hence (((a = 0) and not (b = 0)) or ((b = 0) and not(a = 0))) is true.  

   4.    Hence I’s condition is true.  

   5.    Hence I will print “yes”.          

  Exercise 8  . 
   If (not(a = 0 and b < > 0) and (not(b = 0 and c < > 0) and (c = 0)) then

   Print “yes”     

  else

   Print “no”     

  endif     

   (a)    If a = b = c = 0 before I, what will I print? Why?  

   (b)    If I prints “yes” what can you say about the values of a, b, and c? Why?  

   (c)    If I prints “no” what can you say about the values of a, b, and c? Why?  

   (d)    If a > b > c = 0 before I, what will I print? Why?  

   (a)     

   1.    a = b = 0 before I implies (not(a = 0) and b < > 0) is true.  

   2.    b = c = 0 before I implies (not(b = 0) and c < > 0) is true.  

   3.    1 and 2 above with c = 0 implies the I’s condition is true.  

   4.    Hence I will print “yes”      
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   (c)     

   1.    If I prints “no” then its condition must be false.  

   2.    Hence at least one of its conjuncts must be false.  

   3.    So either c < > 0,or b = 0 and c < > 0, or a = 0 and b < > 0 or any consistent 

combination of these conditions. For example, if c = 0 then a = 0 and b < > 0.          

  Exercise 9  
   I 

1
 : If not(a = 0 and b < > 0) then

   c ← 0     

  else

   c ← 3     

  endif  

  I 
2
 : If not(b = 0 and c < > 0) then

   d ← 2     

  else

   d ← 4     

  endif    

 Let A represent the condition a = 0 and B represent the condition b = 0. For each 

of the four possible pairs of truth values for A and B, what can you say about the 

numeric values of c and d? Why?

   (a)    A and B both true.  

   (b)    A true, B false  

   (c)    A false, B true  

   (d)    A and B both false.  

   (a)     

   1.    Both true implies a = 0 and b = 0.  

   2.    Hence I
1
’s condition is true.  

   3.    Hence c = 0 after I
1
 and before I

2
.  

   4.    b = 0 and c = 0 imply that I
2
’s condition is true.  

   5.    Hence d = 2 after I
2
.  

   6.    So c = 0 and d = 2.      

   (c)     

   1.    A false and B true imply a < > 0 and b = 0.  

   2.    So I
1
’s condition is true.  

   3.    So c = 0 after I
1
 and before I

2
.  

   4.    Hence I
2
’s condition is true.  

   5.    So d = 2 after I
2
.  

   6.    So c = 0 and d = 2.          

  Exercise 10 .  Given the following instructions from the middle of a program and 

assuming that a, b, and c have been assigned values before I 
1
 .
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   I 
1
:   if a = 0 then b ← 1 else b ← 0 endif # So b = 0 or b = 1  

  I 
2
 :  if b < > 0 then c ← 0 else c ← 1 endif # So c = 0 or c = 1

   (a)    If c = 0 after I 
2
 

   1.    Then b = 1 before I 
2
  since if b = 0 before I 

2
  then c ←1 by I 

2
 .  

   2.    Since b = 1 before I 
2
 , a = 0 before I 

1
 , since if a < > 0 before I 

1
  then b ← 0 

by I 
1
 .  

   3.    However, b could have any value before I 
1
  since whatever value it had is 

wiped out by the assignments of I 
1
 .  

   4.    So If c = 0 after I 
2
  then a = 0 and b could have any value before I 

1
 .              
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  Chapter 11  

  Exercise 1 
 For each of the following, determine whether it is TF-true, TF-false, or TF-contin-

gent. Hint, find or make a truth table for each. Then examine its final column.  

   (a)    P ∧ ~P 

P P ∧ ~P

T F

F F 

TF-False          

   (c)    P ↔ P

P P ↔ P
T T

F T 

TF-true          

   (e)    P ↔ ~~P

P P↔ ~~P

T T

F T 

TF-true          

   (g)    P → Q ∨ P → ~Q        

P Q P ® Q ∨ P ® ~Q

T T T T F

T F F T T

F T T T T

F F T T T 

   TF-true     

   (i)    P → Q ∨ Q → P        

P Q P ® Q ∨ P ® Q

T T T T T

T F F T T

F T T T F

F F T T T 

   TF-true     
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   (k)    ~(P ∧ Q) ↔ ~P ∧ ~Q        

P Q ~(P ∧ Q) ↔ ~P ∧ ~Q

T T F T F

T F T F F

F T T F F

F F T T T 

   TF-contingent         

  Exercise 2 .  Use Procedure TFL to try to determine the logical status of each of the 

English statements below. First find logical English for each statement, then find 

an appropriate tff. Then do the truth table for that tff. Then apply Procedure TFL.

   (a)    Today is Monday and today is not Monday.

   logical English: Mon ∨ ~ Mon  

  tff: M ∨ ~ M          

M M ∧ ~M

T T T F T

F F T T F 

  TFL: Since there are all Ts in the final column, the original statement is a 

TF-true.     

   (c)    If Today is Monday and today is not Monday then the Sun is cold.

   logical English: Mon ∧ ~ Mon → Cold  

  tff: M ∧ ~ M → C          

M S M ∧ ~ M ® C

T T F T

T F F T

F T F T

F F F T 

  TFL: Since there are all Ts in the final column, the original statement is TF-true.     

   (e)    If everything is blue then nothing is blue.

   logical English: ∀xBlue(x) → ~∃xBlue(x)  

  tff: B → C          

B C B ® C

T T T

T F F

F T T

F F T 
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  TFL: Since the final column has some Ts and some Fs, the original state-

ment is truth functionally contingent, but the original statement has some 

quantifiers, so TFL fails to classify it.     

   (g)    (If today is Monday then the Moon is blue) just in case (if the Moon is not blue 

then today is not Monday).

   logical English: (Mon ® Blue) ↔ (~Blue ® ~Mon)  

  tfl: (M ® B) ↔ (~B ® ~ M)          

B M (M ® B) ↔ (~B ® ~ M)

T T F T T

T F F T T

F T F T T

F F F T T

  TFL: Since the final column is all Ts, the original statement is TF-true.  

  (i) If it is not raining or it is not snowing and, moreover, it is raining, then it is not 

snowing.  

  Logical English: ((~Rain ∨ ~Snow) ∧ Rain) ® ~Snow  

  tfl: ((~R ∨ ~S) ∧ R) ® ~S          

R S (~ (R ∨ ~ S) ∧ R) ® ~ S

T T F F T

T F T T T

F T T F T

F F T F T

  TFL: Since the final column is all Ts, the original statement is TF-true.     

   (k)    It is not the case that today is Friday and that today is payday if and only if 

today is not Friday or today is not payday.

   Logical English: ~(Fri ∧ Pay) ↔ (~Fri ∨ ~Pay)  

  tff: ~(F ∧ P) ↔ (~F ∨ ~P)          

F P (~(F ∧ P) ↔ (~F ∨ ~P)

T T F T F

T F F T T

F T F T T

F F F T T

  TFL: Since the final column is all Ts, the original statement is TF-true.         

  Exercise 3 .  Use your knowledge of truth tables, TF-truth, and TF-falsity to simplify 

the following instructions. Note that in some cases there may be no way to simplify an 

instruction.
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   (a)    If (x = 0) then

   If not (x = 0) then

   Print ‘Hello’     

  Endif

   Print ‘Goodby’     

  Endif 

 Since the inner condition contradicts the outer condition, “Hello” will never be 

printed. The simplified instruction is  

   If (x = 0) then Print “Goodby” Endif     

   (c)     While (x = 0)

   While not (x = 0)

   x ← x – 1  

  Print x     

   Endwhile  

   Endwhile 

 If not (x = 0) initially then the loop is bypassed, doing nothing. If x = 0 initially 

then the inner loop does not execute, so again nothing happens. The simplified 

instruction is no instruction at all.     

   (e)    If (x > y and not y < 0 or not x > y and y < 0 or not y < 0 or x > y)     

 then Print “This is a mess” Endif 

 Here the condition is complicated enough to be interesting. Let P stand for “x > y” and Q 

stand for “y < 0”. Then the following is a truth table for the condition in this instruction.         

P Q P ∧ ~ Q ∨ ~P ∧ Q ∨ ~ Q ∨ P 

T T F F F F T

T F T T F T T

F T F T T T T

F F F F F T T

 order of evaluation 4 1  6 2 5  7 3 8*main column

 This analysis shows That the condition is a tautology, so it will always be true, so it 

can be eliminated and the instruction can be simplified to just

Print “This is a mess.”   
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  Chapter 12  

  Exercise 1 .  Make a decision table for the following specifications for calculating 

weekly pay for salespeople. 

 Everyone gets a base salary no matter what. Trainees get an additional $100 per 

week. Experienced salespeople in established territories are expected to sell at least 

$2,000 per week. If they do not then they get only their base salary. Anyone who 

sells more than $2,000 in a week gets a 10% commission on the amount over 

$2,000. Anyone selling in a new territory gets an additional 15% commission on 

the amount over $2,000.

 R1  R2  R3  R4  R5  R6  R7  R8 

 C1  Experienced  T  T  T  T  F  F  F  F 

 C2  Est. territory  T  T  F  F  T  T  F  F 

 C3  Sold > 2,000/week  T  F  T  F  T  F  T  F 

 A1  sal←base  Y  Y  Y  Y  Y  Y  Y  Y 

 A2  sal←sal + .10* (sales-2,000)  Y  N  Y  N  Y  N  Y  N 

 A3  sal←sal + 100  N  N  N  N  Y  Y  Y  Y 

 A4  sal←sal + .15*(sales-2,000)  N  N  Y  N  N  N  Y  N 

  Exercise 3 .  Try to simplify the result of Exercise 2. No further simplification is 

possible.  

  Exercise 5 .  Determine the number of Rules (columns) needed for a complete 

decision table for processing records where the transaction type can be “add”, 

“change”, or “delete”, and the transaction code can be “FR”, “SO”, “JR”, “SR”, or 

“SP”. Assume that each combination of transaction type and code requires different 

processing. What are the moduli of the two conditions?

   The modulus of transaction type is 3.  

  The modulus of transaction code is 45  

  So the number of rules needed is 3*5 = 15.     

  Exercise 7a .  Construct a pair of decision tables for calculating insurance origination 

fees according to the following specifications. Make your tables compact by using 

“don’t care” condition entries, extended condition entries, and extended action 

entries as appropriate. Have one table for each kind of insurance. 

 At one time The North Carolina consumer loan laws allowed lenders to charge 

insurance origination fees for the life insurance and for the accident and health 

insurance they may offer borrowers. Borrowers are not required to buy either kind 
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of insurance. For each of the two kinds of insurance the origination fee is: $0 if 

the amount of indebtedness is less than $250, $1 if the amount is between $250 

and $500, and $2 if the amount is greater than $500. Borrowers occasionally 

renew their loans, i.e. borrow more before the original loan is completely repaid. 

In that case they can again choose none, one, or both kinds of insurance and 

another loan origination fee can be charged for each kind of insurance except that 

no more than two origination fees for each type of insurance can be charged in 

any one year period. Your decision tables should assign the appropriate fee for 

each of the two kinds of insurance, i.e. your action entries should specify what 

insurance origination fee to assign under various circumstances for each of the 

two kinds of insurance. 

  Insurance amounts in $100s

 1  2  3  4  5  6  7  8  9  10  11  12 

 Wants insurance  T  T  T  T  T  T  F  F  F  F  F  F 

 >1 fees charged  T  T  T  F  F  F  T  T  T  F  F  F 

 Amount of insurance  <2.5  2.5–5  >5  <2.5  2.5–5  >5  <2.5  2.5–5  >5  <2.5  2.5–5  >5 

 Fee ←  0  0  0  0  1  2  0  0  0  0  0  0 

 Note that this can be simplified. 

 Insurance amounts in $100s

 123  4  5  6  7–12 

 Wants insurance  T  T  T  T  F 

 >1 fees charged  T  F  F  F  – 

 Amount of insurance  –  <2.5  2.5–5  >5  – 

 Fee ←  0  0  1  2  0 

  Exercise 9 .  Make a decision table for the following specifications. The 

subroutine is to delete new record from a sequential access file. It is to do this 

by opening the master file, creating a new master file, and copying records from 

the master file to the new master file until it has read the record to be deleted. 

It does not copy that record to the new master file. Then it copies the remaining 

records from the master file to the new master file, closes both files, and returns 

to the calling program. 

 It is assumed that each record has a KEY field and that the subroutine is given 

the key value of the record to be deleted.
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 R1  R2  R3  R4 

 Master file closed  T  F  F  F 

 At end of master file  –  T  F  F 

 Delete key = record key  –  –  T  F 

 Open master file  Y  N  N  N 

 Create new file  Y  N  N  N 

 Read record from master file  N  N  Y  Y 

 Write record to new file  N  N  N  Y 

 Close master file and new file  N  Y  N  N 

 Repeat  Y  N  Y  Y 
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  Chapter 13  

  Exercise 1 .  Identify the scope of each quantifier and the free and bound instances 

of each variable in the wffs below. Tell which wffs are closed and which are open.  

   (a)    ∀xPx ∧ ∃yPy The scope of ∀x is Px, scope of ∃y is Py, x is bound by ∀x and 

y is bound by ∃y.  

   (c)    ∀z(Pz → Rzb) The scope of ∀z is (Pz → Rzb), and all instances of z are bound 

by ∀z.  

   (e)    ∀x(Pxy ↔ ∃y(Qxy ∨ Rx)) The scope of ∀x is (Pxy ↔ ∃y(Qxy ∨ Rx)), the 

scope of ∃y is (Qxy ∨ Rx), x is bound by ∀x and y is bound by ∃y      

  Exercise 2 .  Using the interpretation described in Example 3, determine the truth 

value of each of the following wffs in I. Explain your reasoning.

   (a)    Pc → Qc is true in I because Pc is true in I and Qc is true in I.  

   (c)    ∃x∀yBxy is false in I since ∀yBxy is not true in any extension I 
x
  of I.       To see 

this note that if ∀yBxy were true in I 
x
  then Bxy would have to be true in every 

extension I 
xy

  of I 
x
 , i.e. there would have to be some assignment to x such that for 

any assignment to y, Bxy would be true, but there is no way to make such an 

assignment.  

  Exercise 3 .  Show that each of the following wffs are L-true

   (a)    ~∀xPx → ∃x~Px, i.e. if it is not the case that everything has property P then 

there is something which does not have property P.     

 The only way for ~∀xPx → ∃x~Px to be false in any interpretation is for 

~∀xPx to be true and ∃x~Px to be false. Suppose I were such an interpretation. 

Then in I ∀xPx would be false. That would mean that not every extension I 
x
  of I to 

x would have Px true in I 
x
 . But if this were the case then Px would be false in that 

I 
x
 . Hence ~Px would be true in I 

x
 . Hence ∃x~Px would be true in I. This contradicts 

the hypothesis that ∃x~Px is false in I. Hence ~∀xPx → ∃x~Px cannot be false in 

any interpretation. Hence it is true in all its interpretations. Hence it is L-true.

   (c)    Pa → ∃xPx, i.e if a has property P then something has property P.     

 The only way for Pa → ∃xPx to be false in any interpretation is for Pa to be true 

and ∃xPx to be false. Suppose I were such an interpretation. Then in I Pa would be 

true. So Px would be true in any extension of I to x in which x were interpreted as a. 

Hence ∃xPx would be true in I. This contradicts the hypothesis that ∃xPx is false in 

I. Hence there can be no such interpretation as I. Hence Pa → ∃xPx cannot be false 

in any interpretation. Hence it is true in all its interpretation. Hence it is L-true.  
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  Exercise 4 .  Show that each of the following wffs are L-false.

   (a)    ∀x(Px ↔ ~Px), i.e. everything has property P if and only if it does not have 

property P.     

 Suppose there were an interpretation, I, of ∀x(Px ↔ ~Px) it which it were true. 

Then in I Px ↔ ~Px would be true in every extension of I to x. Suppose I 
x
  were 

such an extension. Then Px and ~Px would have to have the same truth values in 

I 
x
 . But this is not possible, if one is true the other must be false and vice versa. So 

there cannot be such an extension and hence there cannot be such a thing as I. 

Hence ∃x(Px ↔ ~Px) is false in all its interpretations. Hence it is L-false.

   (c)    ∃xPx ∧ ∀y~Py, i.e. there is something with property P and everything is such 

that it does not have property P.     

 Suppose there were an interpretation, I, of ∃xPx ∧ ∀y~Py in which it were true. 

Then both ∃xPx and ∀y~Py would be true in I. If ∃xPx were true in I then there 

would be an extension, I 
x
 , of I to x in which Px would be true. On the other hand, 

if ∀y~Py were true in I then ~Px would be true in every extension I 
x
  of I to x. 

Hence, no matter how x was interpreted, Px would be false. This contradicts the 

earlier conclusion that there would be an extension, I 
x
 , of I to x in which Px would 

be true. Hence there is no such I. Hence ∃xPx ∧ ∀y~Py if false in all of its inter-

pretations. Hence ∃xPx ∧ ∀y~Py is L-false.  

  Exercise 5 .  For each of the following L-contingent wffs, try to find an interpretation 

in which it is true and an interpretation in which it is false.

   (a)    ∀xPx. An interpretation, I 
1
 , in which ∀xPx is true is <D, V> where D is the set of 

all integers and V(P) is also the set of all integers, i.e. P is interpreted as the property 

of being an integer. The wff is true in I 
1
  because every extension of I to x must 

assign some integer to x, so Px will be true in that extension. Hence ∀xPx is true 

in I 
1
 . 

 An interpretation I 
2
  in which ∀xPx false is <D, V> where D is the set of all 

integers and V(P) is the set of positive integers, i.e. P is interpreted as the prop-

erty of being a positive integer. Any extension of I 
2
  to x in which x is interpreted 

as a negative integer is one in which Px is false. Hence ∀xPx is false 

in I 
2
 .   

    (c)    ∀xEy(Rxy ∧ Ryx). If D = {1, 2} and V(R) = {<1, 1>, <1, 2>, <2, 1>, <2,2>} 

then the wff is true in I. To see this notice that ∀xEy(Rxy ∧ Ryx) is true in I 

just in case Ey(Rxy ∧ Ryx) is true in I 
x
  for every extension of I to x. Suppose 

I 
x
  is any such extension, then Ey(Rxy ∧ Ryx) is true in I 

x
  just in case there is 

an extension of it, I 
xy

  in which Rxy ∧ Ryx is true. Moreover, Rxy ∧ Ryx will 

be true in I 
xy

  if and only if Rxy is true in I 
xy

  and Ryx is true in I 
xy

 . To show that 

this is so, consider that any extension of I to x and then to y will interpret x as 

either 1 or 2 and will interpret y as either 1 or 2. Hence <x, y> will be inter-

preted as <1, 1> ,<1, 2>, <2, 1>, or <2, 2>. Since all four of these ordered pairs 
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are in V(P), whichever one is the interpretation of <x, y> in I 
xy

  will be in V(R). 

Hence Rxy will be true in I 
xy

 . A similar argument shows that Ryx will also be 

true in I 
xy

 . Hence Rxy ∧ Ryx will also be true in I 
xy

 . Hence Ey(Rxy ∧ Ryx) will 

be true in I 
x
 . Since the choice of I 

x
  was completely general, this shows that 

∀xEy(Rxy ∧ Ryx) is true in I.     

 On the other hand, if I is any interpretation in which D = {1, 2} and V(R) = 

{<1,1>, <2,2>} then any extension of I in which x and y are interpreted as dif-

ferent, such x as 1 and y as 2 will be an interpretation in which Rxy ∧ Ryx will 

be false. Hence ∀xEy(Rxy ∧ Ryx) is false in I.  

  Exercise 6 .  Apply Procedure QL to each of the following statements. Hint: you can 

use the lists of L-true, L-false, and L-contingent wffs given in Examples 6, 7, and 

8. Explain your reasoning.

   (a)    All programs have bugs. This statement has the form ∀x(Px → Qx) where Px 

in interpreted as “x is a program” and Qx is interpreted as “x has bugs.” This 

wff is one of Examples 6, so the original statement is logically contingent.  

   (c)    If all men are mortal and Socrates in a man then Socrates is mortal.       This state-

ment has the form (∀x(Px → Qx) ∧ P(a)) → Q(a), with Px representing “x is a 

man”, Qx representing “x is mortal”, and a naming Socrates. Since the wff is 

among Examples 4, it is L-true, so the original statement is L-true.   
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  Chapter 14  

  Exercise 1 
 Determine whether each pair of statement forms shown in Examples 1 are logically 

equivalent by using truth tables.  

   (a)     P ~~P         

P P ↔ ~ ~  P

T T T T F T

F F T F T F 

 The equivalence is a tautology, so they are truth functionally equivalent.  

   (c)     P ∧ Q Q ∧ P         

P Q P ∧ Q « Q ∧ P

T T T T F

T F F T T

F T T T T

F F T T T 

 The equivalence is a tautology, so they are truth functionally equivalent.  

   (e)     P ∨ Q Q ∨ P         

P Q P ∨ Q « Q ∨ P

T T T T F

T F F T T

F T T T T

F F T T T 

 The equivalence is a tautology, so they are truth functionally equivalent.  

   (g)     P ∧ (Q ∨ R) (P ∧ Q) ∨ (P ∧ R)         

P Q R P ∧ (Q ∨ R) « (P ∧ Q) ∨ (P ∧ R)

T T T T T T T T T

T T F T T T T T F

T F T T T T T T T

F T T F F T F F F

F T F F T T F F F

F F T F T T F F F

F F F F F T F F F

 The equivalence is a tautology, so they are truth functionally equivalent.  
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   (i)    P ∨ Q   ~(~P ∧ ~Q)         

P Q P ∧ Q « ~(~P ∧ ~Q)

T T T T T F

T F T T T F

F T T T T F

F F F T F T 

 The equivalence is a tautology, so they are truth functionally equivalent.  

   (j)    ~(P ∧ Q)   ~P ∧ ~Q         

P Q ~(P ∧ Q) « ~P ∧ ~Q

T T F T T F

T F T F F F

F T T F F F

F F T F T T 

 The equivalence is not a tautology, so they are not truth Functionally equivalent.  

   (l)    P ∧ Q ∨ ~P ∧ ~Q   P ↔ Q         

P Q (P ∧ Q ∨ ~P ∧ ~Q) « (P « Q)

T T  T T F T T

T F  F F F T F

F T  F F F T T

F F  F T T T T

 The equivalence is a tautology, so they are truth functionally equivalent.      

  Exercise 2 .  Use truth tables to determine which of the following pairs of 

programming language instructions are equivalent. In case they are not equivalent 

specify the conditions under which they will give rise to different behaviors. 

Assume that short cut evaluation is not used.

   (a)    If x > 0 and (y < x or z < y) then Print “Hello” Endif 

 If (x > 0 and y < x) or z < y) then Print “Hello” Endif 

 Let “P” represent “x > 0”, “Q” represent “y < x”, and “R” represent “z < y”. Then 

the truth table for the equivalence is.         
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P Q R P ∧ (Q ∨ R) « (P ∧ Q) ∨ R

T T T T T T T T

T T F T T T T T

T F T F T F F T

T F F F F T F F

F T T F T F F T

F T F F T T F F

F F T F F F F T

F F F F F T F F

 The underlined truth value assignments indicate the circumstances under which 

the two instructions could give rise to different behaviors.  

   (c)    If not (x > 0 and z < y) then Print “Hello” Endif 

   If not z < y or not x > 0 then Print “Hello” Endif 

 Let “P” represent “x > 0” and “Q” represent “z < y”. Then the truth table for the 

equivalence is:         

P Q ~(P ∧ Q) « ~Q ∧ ~P

T T F T T F

T F T F F F

T T T F F F

F F T F T T 

 The underlined truth value assignments indicate the circumstances under which the 

two instructions could give rise to different behaviors.  

   (e)    While (not(x > 0 and y < z))

    print(x, y)  

   x ← x − y       

   endwhile  

  While (not y < z and x > 0)

    print(x, y)  

   x ← x − y     

   endwhile          

P Q ~(P ∧ Q) « ~Q ∧ P

T T F T T F F

T F T F F T T

F T T F T F F

F F T F T T F
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   when x > 0 and not y < z the two loops will behave differently.     

  Exercise 3 .  Use truth tables to determine which of the following pairs of SQL 

instructions are TF-equivalent. In case they are not, specify the conditions under 

which they could give rise to different reports. Do not assume anything about what 

data is in the tables, the data may be entirely different from the date in the tables 

used earlier. Do assume that there are no nulls in the data tables.

   (a)    SELECT supplier, item_number 

 FROM suppliers 

 WHERE not (unit_price = 3.00 and qty100_price > 500.00) 

 SELECT supplier, item_number 

 FROM suppliers 

 WHERE not (unit_price = 3.00) and not (qty100_price > 500.00) 

 Let “P” represent “unit_price = 3.00” and “Q” represent “qty100_price > 500.00”. 

Then the truth tables for the equivalence is:         

P Q ~(P ∧ Q) « ~P ∧ ~Q

T T F T F

T F T F F

F T T T T

F F T T T

 The underlined truth value assignments indicate the circumstances under which 

the two statements could give different results, depending of course on the actual 

data in the tables.  

   (c)    SELECT item_number, sell_price 

 FROM items 

 WHERE color = “blue” and on_hand < 100 or on_order = 0 

 SELECT item_number, sell_price 

 FROM items 

 WHERE (color = “blue” or on_hand < 100) and (color = “blue” or on_order = 0) 

 Let “P” represent “color = blue”, “Q” represent “on_hand < 100”, and “R” rep-

resent “on_order = 0”. Then the truth tables for the equivalence is:         

P Q R (P ∧ Q) ∨ R « (P ∨ Q) ∧ R

T T T T T T T T

T T F T T F T F

T F T F T T T T

T F F F F T T F

F T T F T T T T

F T F F T T T F

F F T F F F F F

F F F F T T F F
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 The underlined truth value assignments indicate the circumstances under which 

the two statements could give different results, depending of course on the actual 

data in the tables.      

  Exercise 4 .  Explain why the following logical equivalence claims are true.

   (a)    ∀xPx ≡ ∀yPy Suppose I is any interpretation of ∀xPx ↔ ∀yPy and ∀xPx is 

true in I, then Px is true of every element in the domain of I. But Py will also be 

true of every element of I. Hence ∀yPy will be true in I. On the other hand, suppose 

∀xPx is false in I. Then there is some element, d, of the domain of I of which Px is 

false. But in that case Py will also be false of d. Hence ∀yPy will be false in I. Since 

this argument applies to any interpretation it follows that ∀xPx ≡ ∀yPy.  

   (c)    ∃xPx ≡ ~∀x~Px Suppose I is any interpretation of ∃xPx ↔ ~∀x~Px and 

∀xPx is true in I. Then there is an element, d, of the domain of I of which Px 

is true. Hence ∀x~Px is false in I. Hence ~∀x~Px is true in I. On the other 

hand, suppose ∃xPx is false in I. Then there is no element, d, of the domain 

of I of which Px is true. Hence ~Px is true of all elements of the domain of I. 

Hence ∀x~Px is true in I. Hence ~∀x~Px is false in I. Since this argument 

applies to any interpretation it follows that ∀xPx ≡ ~∀y~Py.      

  Exercise 5 .  For each of the pairs of wffs below, find an interpretation in which one 

of them is true and the other is false. Hint for item c the fact that every pen in my 

desk has either red ink or black ink is not the same as every pen in my desk having 

red ink or every pen in my desk having black ink.

   (a)     P ~P     

 Let I be any interpretation in which P is true. then ~P is false in I.

   (c)     ∀x(Px ∨ Qx) ∀xPx ∨ ∀xQx     

 Let I be an interpretation in which P is the property of being a pen on my desk with 

red ink and Q is the property of being a pen on my desk with blue ink. Suppose that 

there are three pens on my desk, one with red ink and two with blue ink. Then 

∀x(Px ∨ Qx) is true in I but ∀xPx ∨ ∀xQx is false in I.

   (e)     ∀x∃yQxy ∃y∀xQxy     

 Let I be the interpretation with D = the set of integers and let V(Q) be the greater 

than relation between integers. Then ∀x∃yQxy is true in I since for every integer 

there is an integer which it is greater than. But ∃y∀xQxy is false in I since there is 

no integer which is less than every integer.  
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  Exercise 6 .  Determine whether the statement on the right is truth functionally 

redundant relative to the set of statements on the left. 

 Set of statements Statement

   (a)    {P} Q ∨ (~Q) redundant          

 

P Q P P ∧ (Q  ∨ (~Q))

T T T T T

T F T T T

F T F F T

F F F F T

   (c)    {P ∨ Q, Q ∨ R, ~Q} R ∧ P redundant              

P Q R ((P ∨ Q) ∧ (Q ∨ R)) ∧~Q (∧ S) ∧(R∧P)

T T T T T T F F F T

T T F T T T F F F F

T F T T T T T T T T

T F F T F F F F F F

F T T T T T F F F F

F T F T T T F F F F

F F T F F F F F F F

F F F F F F F F F F

  Exercise 7 .  Determine which of the following sets of statements are TF-redundant 

and which are not. Note that showing that a set of statements is not redundant 

requires separately investigating what happens when each element of S is removed, 

e.g. by removing each component of the original set S in turn and, for each of them, 

comparing the truth table for (∧S) with the truth table for (∧S) with that element of 

S removed. You might also find some shortcut in particular cases.

   (a)     {P, ~P, ~~P} redundant: P and ~~P are equivalent, so ~~P is redundant     

 with respect to the rest of the set.

   (c)    {P∧Q, P, Q} redundant: any element can be removed without changing     

 the truth table of the conjunction of the remaining elements.   
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  Chapter 15  

  Exercise 1 .  Suppose you could establish that an argument was valid but that its 

conclusion was false. What could you tell about its premises? 

 Its premises are not all true, since if they were all true and the argument were 

valid, its conclusion would have to be true.  

  Exercise 2 .  For each of the remaining rows of the table, do an analysis as was done 

in the examples above. This is not as laborious a task as it may seem. You can 

eliminate several rows at a time, for example an argument cannot be sound and 

invalid, so rows 3, 7, 11, 15, 19, and 23 can all be treated at once. The hard part will 

be coming up with example arguments for some of the rows that are possible.  

   Rows 1, 2, 8, 9, 10, and 22 are discussed in the examples. Rows 3, 7, 11, 15, 19, 

and 23 are treated in the discussion of this exercise. Rows 13, 17, and 21 are not 

possible because all the premises of a sound argument must be true. Rows 5 and 6 

are not possible because a valid argument with all true premises must have a true 

conclusion. This accounts for all but rows 4, 12, 14, 16, 18, 20, and 24. Each of 

these is possible, as is shown by the examples below.  

  Row 4: Pick any true statement as the premise. Pick any other true statement that 

has nothing to do with the first as the conclusion. As long as the premise has noth-

ing to do with the conclusion the argument will be invalid and hence unsound. For 

example:

    P: 3 > 5.  

   C: Snow is generally colder than steam.     

  Row 14: Pick any valid argument and add a false premise having nothing to do 

with the argument and you have an example for this row.

   P1: All men are mortal.  

  P2: Socrates is a man.  

  P3: Mount Everest is a small mountain.  

  C:  Socrates is mortal.     

  Row 18: The example for Row 22 showed that a valid argument can lead from 

all false premises to a false conclusion. The example below shows that a valid argu-

ment can lead from all false premises to a true conclusion. Together they illustrate 

the fact that validity is not much good in the search for truth if you don’t use true 

premises.

   P1: All mammals are green.  

  P2: All green things have hearts.  

  C:   All mammals have hearts.     

  Row 24: Just replace the conclusion of the example for Row 20 with an unre-

lated false statement and we have an example for this row.
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   P: All mammals are green.  

  C: 5 < 3.        

  Exercise 3 .  Write the conditional corresponding to the following argument, as was 

done in the Example 9.

   For every number there is a number such that their sum = 0. 

c is a number.   

  There is a number such that it plus c = 0.  

  (If for every number there is a number such that their sum = 0 and c is a number) 

then there is a number such that it plus c = 0.     

  Exercise 5 .  Use informal methods. If the argument is valid, explain why. If it is 

invalid, give a counterexample.  

   (a)     Today is Monday      

  tomorrow must be Tuesday. 

 Valid. By definition, the day after Monday is Tuesday and the day after today is 

tomorrow.

   (c)     The rest of the program works perfectly.      

 If there is a problem with the program it must be in the new   procedure. 

 Invalid. For example, the problem with the program could be user error.

   (e)    If x were 5 at line 2,020 then the program would have crashed.     

  It did crash.  

 So probably x was 5 at line 2,020. 

 Invalid. First this is an inductive argument, so validity is not an issue. Second, it is 

invalid even without the word probably in the conclusion. It could be that if x were 

any value other than zero at line 2,020 the program would have crashed.

   (g)    If the program was run yesterday then a run log entry for it would      

 have been made. 

 No run log entry for it was made. 

  Moreover, if the program was not run yesterday then the records in  

  it are not current.  

 Hence the records in it are not current. 

 Valid if reconstructed as follows. 



288 Solutions to Selected Exercises

 If the program was run yesterday then a run log entry for it would  

 have been made. 

  No run log entry for it was made.  

 The program was not run yesterday. 

 Moreover, if the program was not run yesterday then the records in  

  it are not current.  

 Hence the records in it are not current. 

 This is a compound argument with “The program was not run yesterday” as an 

implicit conclusion of the first argument. If the first two premises are true then the 

first premise is a true conditional with false consequent. Hence its antecedent is 

false. Hence the implicit conclusion is true. If the second premise of the second 

argument is true then it is a true conditional with true antecedent. The only way for 

this to happen if for the consequent to be true also.  

  Exercise 7 .  Apply the truth table test to each of the following argument forms.

   (a)     ~(P ∧ Q), R ↔ ~P, P → ~R, Q      

  P         

P Q R ((((~P ∧ Q) ∧ (R ↔ ~P)) ∧ (P →~R)) ∧ Q) → P

T T T F T F F F F F T

T T F F T F T F T F T

T F T T F F F F F F T

T F F T F T T T T F T

F T T T F T T T T T F

F T F T F F F F T F T

F F T T F T T T T F T

F F F T F F F F T F T

 Since the conditional is contingent, the test fails.

   (c)     P → ~(Q ∧ R), ~P ∨ Q      

  ~R         

P Q R (((P → ~ (Q ∧ R)) ∧ (~P ∨ Q) → ~R

T T T F T F F F F

T T F F T F F F T

T F T T F F T F F

T F F T F F F F T

F T T T T T F T T

F T F

F F T

F F F
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 Since the conditional is TF-contingent, the test fails.

   (e)     ~(P ∨ Q), ~(P ∧ ~Q)      

  P ↔ Q         

P Q (~(P ∨ Q)∧ ~(P ∧ Q)) → (P ↔ Q)

T T F T F T F T T

T F F T F F T T F

F T F T F T F T F

F F T F T T F T T

 Since the conditional is a tautology, the argument form is valid.  

  Exercise 8 .  Use an informal approach to showing the validity or invalidity of each 

of the following arguments.

   (a)     All birds are bipeds., Chalky is not a biped.  

  Chalky is not a bird. 

 Valid. If the premises were true the conclusion could not be false. If Chalky were 

a bird then by the first premise, Chalky would be a biped. But this contradicts the 

second premise. Hence Chalky is not a bird.  

   (c)     All birds are bipeds., Everything is a biped.  

  Everything is a bird. 

 Invalid. Suppose there were only birds and people. them both premises would be 

true, but the conclusion would be false.  

   (e)     Tweety is a bird.  

  Everything is a bird. 

 Invalid. The world we live in is one is which Tweety (the cartoon character) is a 

bird but not everything is a bird.  

   (g)     Everything is a bird.      

  My cat is a bird. 

 Valid. If everything is a bird then my cat, being something, would have to be a bird.  

  Exercise 9 .  Determine which of the following argument forms are valid and which 

are not valid. If an argument form is valid explain why it is valid, i.e. explain why 

the corresponding conditional must be true in all of its interpretations. If it is 

invalid, give a counterexample, i.e. give an interpretation in which all the premises 

are true and the conclusion is false.

   (a)     ∀x(Px → Qx), ~Qa  

  ~Pa 
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 All arguments of this form are valid. The idea is that everything that has property 

P also has property Q, but a does not have property Q, then a cannot have property 

P either. 

 The corresponding conditional wff is (∀x(Px → Qx) ∧ ~Qa) → ~Pa. If the argu-

ment form were not valid then there would be an interpretation, I, of the conditional 

in which it is false. In that case (∀x(Px → Qx) ∧ ~Qa) would be true in I and ~Pa 

would be false in I. Hence both ∀x(Px → Qx) and ~Qa would have to be true in 

I and Pa would be true in I as well. Since ∀x(Px → Qx) is true in I, Px → Qx must 

be true in every extension of I to x. In particular it must be true in any extension to 

x in which x is interpreted as a. Hence Pa → Qa is true in that extension. Combined 

with the fact that Pa is true in I it follows that Qa is true in that extension of I. But 

Qa is false in I, so it is false in this extension of I. So Qa is true and Qa is false in 

that extension. This is contrary to the law of noncontradiction. Hence the assump-

tion the argument form is not valid is false. Hence it is valid.  

   (c)     ∀x(Px → Qx), ∀xQx  

  ∀xPx 

 This is not a valid argument form. Let I be an interpretation in which the domain 

is the set of positive integers, Px means “x is a prime number” and Qx means “x is an 

integer.” Then ∀x(Px → Qx) is true in I, since all prime numbers are positive integers. 

But ∀xPx is false in I, since not every positive integer is a prime number.  

   (e)     Pa  

  ∀xPx 

 This is an invalid form. Let I be the interpretation in which the domain is the set 

of animals, Px is interpreted as “x is a cat”, and a is interpreted as my cat, Chalky. 

Then Pa is true in I because Chalky is a cat. But ∀xPx is not true in I because not 

all animals are cats.  

   (g)     ∀xPx  

  Pa 

 This is a valid form. Let I be any interpretation in which ∀xPx is true. Then Px is 

true in every extension of I to x. No matter how a is interpreted, Px will be true of a 

in those extensions of I to x in which x is identified with a. Hence Pa is true in I.       
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  Chapter 16  

  Exercise 1 .  Identify one correct rule of inference that could be used to justify each 

of the following inferences. If no single correct rule can justify the inference, say 

so.  

   (a)    If the file were sorted in ascending order the Adams record would be first. 

Moreover, the file is sorted in ascending order. Hence the   Adams record is 

first. 

 Solution:  modus ponens  (also known as affirming the antecedent and as 

→-elimination))  

   (c)    Today is Tuesday and it is raining here now. Hence today is Tuesday. 

 Solution: simplification (also know as ∧-elimination)  

   (e)    If x = 5 then y = 7. Also, if a > 0 then b < 0. Moreover, x = 5 or a > 0.  

 Consequently, y = 7 or b < 0. 

 Solution: constructive dilemma   

   (g)    (x = 3) ↔ (y < 0) 
  ------------------------------- 

  (y < 0) ↔ (x = 3) 

 Solution: ↔ is commutative   

   (i)    S → (T ∨ Q) 
  ------------------------------ 

  S → (S ∧ (T ∨ Q)) 

 Solution: No one rule given will justify this, although it is correct.   

   (k)    S ↔ (R ∧ (~Q)), (R ∧ S) ↔ (T ∨ S) 
  ------------------------------------------------------------- 

  (R ∧ S) ↔ (T ∨ (R ∧ (~Q)) 

 Solution: substitution rule 2 (also know as sub2) by substituting R ∧ (~Q) for the 

second instance of S in (R ∧ S) ↔ (T ∨ S).      

  Exercise 3 .  Given the following three premises, apply valid rules of inference to 

them to arrive at four conclusions that differ from the premises and from the 

example given below. For each of the four inferences you may use any of the 

three given premises or any of the conclusions you have from previous inferences. 

For each inference, tell what inference you are making and give a name of rule 

you are applying.

   Premises: A ∧ (B ∨ C), B → ~D, ~ ~ D  

  Solution: Correct answers will differ.
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   1.    Infer D from ~~D using ~~-elimination.  

   2.    Infer A from A ∧ (B ∨ C) using ∧-elimination  

   3.    infer ~B from B → ~D and ~~D using  modus tollens   

   4.    Infer A ∧ ~B from the given premises and the conclusion above using 

∧-introduction.         

  Exercise 4 .  For each of the incorrect rules above, give a counterexample that shows 

that the rule is incorrect. 

   (a)    P → Q, Q      
 (affirming the consequent) 

  P 

 If today is the last day of class then there is a test today. 

  There is a test today  

 Therefore today is the last day of class. 

 In any class in which there is a mid term test not on the last day of class and a 

test on the last day of class, this argument would have true premises and a false 

conclusion on the day of the mid term test.

   (c)    P → Q         (converting a consequent) 

 Q → P 

  If today is Friday then there is a test today.  

 If there is a test today then today is Friday. 

 In any class in which there was a test on every Friday and occasionally on other 

days, this argument would have a true premise and false conclusion on any test day 

that is not a Friday.   
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  Chapter 17  

  Exercise 1 .  Fill in columns 2 and 4 for the following (formal) proof of the 

correctness of the argument form 

 A → (B ∧ C), ~C / ~A  

  Proof:  

   1.    1 A → (B ∧ C) premise  

   2.     2  ~C / ~A premise / conclusion   

   3.    2 (~B) ∨ (~C) ∨ introduction 2  

   4.    2 ~(B ∧ C) de Morgan 2  

   7.    1,2 ~A modus tollens 6, 1      

  Exercise 3 .  If A is replaced by “x > 0”, B is replaced by “y = 1”, and C is replaced 

by “z = 5” then what specific argument does the proof of Exercise 1 show to be 

valid?

   P1: If x > 0 then y = 1 and z = 5.  

   P2: not z = 5.  

   C: Not x > 0.     

  Exercise 4 
 Use conditional proof to prove the following. Hint, in some cases you may have to 

use the rule of conditional proof more than once in a single proof.         

a. A → C, B → D / (A ∧ B) → (C ∧D)

1. 1 A → C premise

2. 2 B → D / (A ∧ B) → (C ∧ D) premise / conclusion

3. 3 A ∧ B assume for CP

4. 3 A ∧ elim. 3

5. 1,3 C → elim. 1,3

6. 3 B ∧ elim. 3

7. 2,3 D → elim. 2,6

8. 1,2,3 C ∧ D ∧ intro. 5, 7

9. 1,2 (A ∧ B) → (C ∧ D) → intro. 3, 8

c. A → (B → C) / (A ∧ B) → C

1. A → (B → C) / (A ∧ B) → C premise/conclusion

2. 2 A ∧ B assume for CP

3. 2 A ∧ elim. 2

4. 1,3 B → C → elim. 1, 3

5. 1,2,3 B ∧ elim. 2

6. 2 C → elim. 4, 5

7. 1 (A ∧ B) → C → intro. 2, 6
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  Exercise 5 .  Use indirect proof to prove the following         

a. P ∨ Q, P ∨ ~Q / P

1. 1 P ∨ Q premise

2. 2 P ∨ ~Q / P premise / conclusion

3. 3 ~P assume for indirect proof (IP)

4. 1,3 ~Q disjunctive syllogism 1, 3

5. 2,3 ~~Q disjunctive syllogism 2, 3

6. 2,3 Q ~~ elim. 5

7. 1,2,3 Q ∧ ~Q ∧ intro. 6, 4

8. 1,2 P ~ elim. 3, 7

c. (S ∧ T) ∨ Q, (S ∧ T) ∨ R, R → ~Q / (S ∧ T)

1. 1 (S ∧ T) ∨ Q premise

2. 2 (S ∧ T) ∨ R premise

3. 3 R → ~Q / S ∧ T premise / conclusion

4. 4 ~(S ∧ T) assume for IP

5. 1,4 Q disj. syll. 1, 4

6. 2,4 R disj. syll. 2, 4

7. 2,3,4 ~Q → elim. 3, 6

8. 1,2,3,4 Q ∧ ~Q ∧ intro. 5, 7

9. 1,2,3 S ∧ T ~ elim. 4, 8

  Exercise 6 .  For each of the following, either construct a formal proof of it or show 

a counterexample to it. Note: a counterexample to an allegedly valid argument form 

could be given by specifying an assignment of truth values of the elementary 

statements involved which made all the premises true and the conclusion false. A 

counterexample to an allegedly valid argument form could also be given by 

showing an instance of that form with obviously true premises and a false 

conclusion.        

a. P → Q, Q → R, R → S, S → T, T → U, ~U / ~P

1. 1 P → Q premise

2. 2 Q → R premise

3. 3 R → S premise

4. 4 S → T premise

5. 5 T → U premise

6. 6 ~U / ~P premise / conclusion

7. 5,6 ~T modus tollens 5, 6

8. 4,5,6 ~S modus tollens 4, 7

9. 3,4,5,6 ~R modus tollens 3, 8

10. 2,3,4,5,6 ~Q modus tollens 2, 9

11. 1,2,3,4,5,6 ~P modus tollens 1, 10
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c. (P → (Q → R)) / ((P → Q) → R)

 In case P, Q, and R are all false, the premise will be true and the conclusion false, 

so this is not a theorem.         

e. ((P ∧ Q) → R) / (P → (Q → R))

1. 1 ((P ∧ Q) → R) / (P → (Q → R)) premise / conclusion

2. 2 P assume for CP

3. 3 Q assume for CP

4. 2,3 P ∧ Q ∧ intro 2, 3

5. 1,2,3 R → elim 1, 4

6. 1,2 Q → R → intro 3, 5

7. 1 P → (Q → R) → intro 2, 6

g. ((P → R) / (P ∧ Q) → R

1. 1 ((P → R) / (P ∧ Q) → R premise / conclusion

2. 2 P ∧ R assume for CP

3. 2 P ∧ elim 2

4. 1,2 R → elim 1, 4

5. 1 (P ∧ Q) → R → intro 2, 4

  Exercise 7 .  For each of the following alleged theorems of logic (tautologies), either 

construct a formal proof of it or show a counterexample to it. Note: a counterexample 

to an alleged tautology could either be an assignment of truth values which was not 

all ts in its final column or an instance of the statement form which is false .       

a. ((P ∨ Q) → R) → ((P → R) ∨ (Q → R))

Theorem: ((P ∨ Q) → R) → ((P → R) ∨ (Q → R))

Proof:

1. 1 (P ∨ Q) → R assume for CP

2. 2 P ∨ Q assume for CP

3. 1,2 R → elim 1, 2

4. 4 P assume for CP

5. 1,2 P → R → intro 3, 4

6. 1,2 (P → R) ∨ (Q → R) ∨ intro 5

7.  ((P ∨ Q) → R) → ((P → R) ∨ (Q → R)) → intro 2, 6

c. ((P → R) ∨ (Q → R) → ((P ∨ Q) → R)

Theorem: ((P → R) ∨ (Q → R) → ((P ∨ Q) → R)

Proof:

1. 1 ((P → R) ∨ (Q → R) assume for CP

2. 1 P → R ∧ elim 1

3. 3 P ∧ Q assume for CP

4. 3 P ∧ elim 3

5. 1,3 R → elim 2, 4

6. 1 (P ∧ Q)→ R → intro 3, 5

7.  ((P → R) ∧ (Q → R) → ((P ∧ Q) → R) → intro 1, 6
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e. ~(P ∨ Q) ↔ (~P ∧ ~Q)

Theorem: ~(P ∨ Q) ↔ (~P ∧ ~Q)

Proof:

1. 1 ~P ∧ ~Q assume for CP

2. 1 ~P ∧ elim 1

3. 1 ~Q ∧ elim 1

4. 4 P ∨ Q assume for IP

5. 1,4 Q disj. syll. 2, 4

6. 1,4 Q ∧ ~Q ∧ intro 3, 5

7. 1 ~(P ∨ Q) ~ intro 3, 6 (dis. 4)

8.  (~P ∧ ~Q) → ~(P ∨ Q) → intro 1, 7 (dis. 1)

This is the end of first part of the proof.

9. 9 ~(P ∨ Q) assume for CP

10. 10 P assume for IP

11. 10 P ∨ Q ∨ intro 10

12. 9,10 (P ∨ Q) ∧ ~(P ∨ Q) ∧ intro 9, 11

13. 9 ~P ~ intro 10, 12 (dis. 10)

14. 14 Q assume for IP

15. 14 P ∨ Q  ∧ intro 14

16. 9,14 (P ∨ Q) ∧ ~(P ∧ Q) → intro 9, 15

17. 9 ~Q ~ intro 14, 16 (dis. 14)

18. 9 ~P ∧ ~Q → intro 13, 17

19.  ~(P ∨ Q) → ~P ∧ ~Q → intro 9, 18 (dis. 9)

This is the end of the second part of the proof.

20.  ~(P ∨ Q) ↔ (~P ∧ ~Q) ↔ intro 8, 19

   g.    ((P ∧ Q) ∨ (P ∧ ~Q)) This is not a tautology. Let P be false and Q be either 

value.      

  Exercise 8 .  In each of the following, write the instance of the general proof that 

results if P is replaced by “Today is Tuesday”, Q is replaced by “We have a meeting 

today”, R is replaced by “It is raining”, S is replaced by “It is snowing”, and T is 

replaced by “Today is Thursday”.

   (a)    The proof in Example 4.  

   (b)    The proof in Example 5.  

   (c)    The proof in Example 6.  

   (d)    The proof in Example 7.
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   (a)    Instance of Example 4.          

1. 1 If today is not Tuesday then we have a 

  meeting today and it is raining premise

2. 2 It is not raining. premise

  Therefore today is Tuesday conclusion

3. 3 Today is not Tuesday assume (for IP)

4. 1,3 We have a meeting today and

  it is raining → elim. 1,3 (or MP 1,3)

5. 1,3 It is raining. ∧ elim. 4

6. 1,2,3 It is raining and it is not raining ∧ intro. 5,2

   (a contradiction)

7. 1,2 Today is Tuesday ~ elim 3,6 (assumption

   in 3 is discharged)

   (c)    Instance of Example 6.          

1. 1 If it is raining or we have a meeting

  today then today is Tuesday premise

2. 2 If today is Tuesday then it is snowing

  and today is Thursday premise

3. 3 It is not snowing or today is not Thursday premise

  Hence, It is not the case that it is raining

  or we have a meeting today. conclusion

4. 4 It is raining or we have a meeting today assume (for IP)

5. 1,4 Today is Tuesday → elim. 1,4

6. 1,2,4 It is snowing and today is Thursday → elim. 2,5

7. 3 It is not the case that it is snowing

  and today is Thursday de Morgan 3

8. 1,2,3,4 It is snowing and today is Thursday and

  it is not the case that both it is snowing

  and today is Thursday. ∧ intro. 6, 7

11. 1,2,3 It is not the case that it is raining or

  we have a meeting today. ~ intro. 4, 8

  Exercise 9 .  Using the style of Example 9, construct proofs of the following theorems. 

Suggestion: Use the fact that (x = 0) ∨ ((x < 0) ∨ (x > 0)) and (y = 0) ∨ ((y < 0) ∨ (y 

> 0)) and (z = 5) ∨ ((z < 5) ∨ (z > 5)). Note: your proofs may differ and still be 

correct.          
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a.

Theorem: (x = 0 → ~ z = 5) ∧ ~(z < 5 ∨ z > 5) → ~ x = 0.

Proof:

1. 1 (x = 0 → z = 5) ∧ ~(z < 5 ∨ z > 5) assume for CP

2. 1 x = 0 → z = 5 ∧ elim. 1

3. 1 ~(z < 5 ∨ z > 5) ∧ elim. 1

4. 1 ~ z < 5 ∨ ~ z > 5 de Morgan 3

5. 1 ~ z < 5 ∧ elim 4

6. 1 ~ z > 5 ∧ elim 4

7. 1 z < 5 ∨ (z = 5 ∨ z > 5) arithmetic

8. 1 z = 5 ∨ z > 5 disjunctive syllogism 7, 5

9. 1 z > 5 ∨ z = 5 ∨ is communicative

10. 1 z = 5 disjunctive syllogism 9, 6

11. 1 ~ ~ z = 5 ~ ~ intro 10

12. 1 ~ x = 0 modus tollens 2,

13.  (x = 0 → ~ z = 5) ∧ ~(z < 5 ∨ z > 5)

  → ~ x = 0.  → intro 1, 6

c.

Theorem: (((y = 1 → (z = 5 ∧ x = 0)) ∧ ~ z = 5) → ~ y = 1

Proof:

1. 1 (((y = 1 → (z = 5 ∧ x = 0)) ∧ ~ z = 5) assume for CP

2. 1 (((y = 1 → (z = 5 ∧ x = 0)) ∧ elim 1

3. 1 ~ z = 5 ∧ elim 1

4. 1 ~ z = 5 ∨ ~ x = 0 ∨ intro 3

5. 1 ~(z = 5 ∧ x = 0) de Morgan 4

6. 1 ~ y = 1 modus tollens 1, 5

7.  (((y = 1  → (z = 5 ∧ x = 0)) ∧ ~ z = 5)

 → ~ y = 1 → intro 1, 6
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  Chapter 18  

  Exercise 1 .  Suppose a program does nothing but go into an infinite loop no matter 

what input it is given. For what problems, if any, is a partially correct? 

 It is partially correct for every problem since there are no cases where it halts 

with the wrong answer.  

  Exercise 3 .  Show by example that an program may be totally correct with respect to 

one problem and not totally correct with respect to another. You don’t need to write 

a program, just describe what such a program and problems would be in specific 

terms. 

 Obviously, answers will vary. An algorithm that correctly calculates the sum of 

any positive integers and gives output –1 for inputs that are not positive integers is 

totally correct for the problem of finding the sum of any two positive integers but 

is not totally correct for the problem of finding the sum of any two integers.   
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  Chapter 19  

  Exercise 1 .  Write proofs of correctness in the style of examples 1–3 for each of the 

following algorithms.  

   (a)             

0 Algorithm countZeros(L)

 # Pre: L is a list of numbers.

 # Post: Returns the number of zero elements of L.

1  count ← 0 # Count is number of zeros found so far.

2  I ← 0 # I is loop control variable

3  While I < len(L) do

4  If L[I] = 0 then count ← count + 1 Endif

5  I ← I + 1

  Endwhile

6  Return count

 EndAlgorithm

  Proof of Correctness : Count is supposed to be the number of zeros found so far in L. 

The loop invariant is that count is the number of zeros in L found so far. Initially no 

zeros have been found and initially count is assigned zero at line 1. If the list is empty 

the loop terminates immediately and the algorithm returns 0 at line 6. If the list is not 

empty then setting I to zero in line 2 causes the loop at line 3 to start by examining 

the first element of L. If it is zero then count is incremented by 1 and if not then count 

stays as it was. Line 5 increases I by 1. Consequently, after one iteration of the loop 

count is still the number of zeros in L found so far. Each time through the loop count 

is increased by 1 if a new zero is found and left as it was otherwise. If the loop termi-

nates, all the elements of L have been examined and count is the number of zeros in 

L found so far. And this is the total number of zeros in L, since all of L has been 

examined. Hence countZeros(L) returns the number of zeros in L. Moreover, the loop 

must terminate since I begins at zero and increases by 1 each time through the loop. 

Eventually I must become = or > the length of L. At that point the loop is exited.        

c.

0 Algorithm isReverseOf(A, B)

 # Pre: A and B are 1-dim arrays of numbers of the same length

 # Post: Returns true if B is reverse of A, else returns false

1  reply ← true

2  If len(A) < > len(B) then

3    reply ← false

  Else

4  I ← 0

5  While (I < len(A)) and (reply = true)) do

6    If A[I] < > B[len(A) - (1 + I)) then

7     reply ← false
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    Endif

8    I ← I + 1

  Endwhile

 Endif

9 Return reply

 EndAlgorithm

  Proof of Correctness : Initially reply is assigned true and it remains true unless the ele-

ment at position I of A does not match the element at position Len(A) – (1 + I) of B. In 

this case reply is set to false and the loop is immediately exited. A useful loop invariant 

is that the first I elements of A have been compared with the last I elements of B and 

that corresponding elements of A and B are the same, i.e. the first element if A = the 

last element of B, the second element of A = the next to last element of B, and so on. 

Initially I is set to zero at line 4 and the loop invariant is (vacuously) true, i.e. the first 0 

elements of A have been compared with the last 0 elements of B and corresponding 

elements of A and B are the same. If A is empty then the loop body is skipped, control 

passes to line 9 and true is returned, as it should be. If len(A) > 0 then the loop body is 

executed for the first time and A[0] is compared with B[len(A) – (1 + I)] which is the 

last element of B. If they are different B is not the reverse of A, reply is assigned false, 

and the loop terminates with control passing immediately to line 9 where false is 

returned. If the two list elements are the same then reply remains true, I is increased by 

1, and the loop invariant remains true. This process is repeated each time the loop body 

is executed. If the loop is terminated prematurely it is because corresponding elements 

of A and B have been found which are not the same, B is not the reverse of A, reply is 

assigned false, control passes to line 9, and false is returned. If the loop exits normally, 

with I = len(A) then corresponding elements of A and B are the same for the length of 

A (and B), B is the reverse of A, reply is still true, and control passes to line 9 where 

true is returned. The loop must eventually exit, and the program halt, because I starts at 

0 and increases by 1 each time the loop body is executed, so eventually I = > len(A). 

Hence isReverseOf(A, B) returns true if B is reverse of A, and returns false otherwise.      

  Exercise 2 .  In each case, find {P(e/v)} given v ← e and {P(v) where v is some 

variable.

   (a)    v ← 5 {v = 5} e must be 5 and P(e/v) must be P(v) with every instance of v 

replaced by 5, so P(e/v) must be 5 = 5.  

   (c)    x ← x + 5 {x + 5 < z + x} e must be x + 5 and v must be x. So P(e/v) must be 

(x + 5) + 5 < (x + 5).      

  Exercise 3 .  In each part an incomplete instance of a rule of inference is given. 

Identify the rule you can apply and fill in the missing conclusion.

   (a)    An instance of the Sequence Rule  

 {x and y are integers} z ← x * y {x and y are factors of z} 

  {x and y are factors of z} w ← z   2    {x   2    and y   2    are factors of w}  

 {x and y are integers} z ← x * y; w ← z 2  {x 2  and y 2  are factors of w  
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   (c)    An instance of the If Else Rule  

 {x and y are numbers and x >= y} max ← x {max is the larger of x and y} 

  {x and y are numbers and ~x ≥= y} max ← y {max is the larger of x and y}  

 {x and y are numbers} 

 If x > = y} max ← x else max ← y 

 {max is the larger of x and y}  

   (e)    An instance of the While Do Rule  

  {F = J factorial ∧ J < N} J ← J Î 1; F ← F * J {F = J factorial}  

 {F = J factorial} 

 While (J < N) Do 

  J ← J + 1; F ← F * J 

 Endwhile 

 {F = J factorial ∧ ~J < N}      

  Exercise 4 
 Give complete proofs of correctness (supplying midconditions and reasons) for 

each of the following algorithms.

   (a)     Algorithm maxOf2(x, y) 

 # Pre: x and y are numbers. 

 # Post: Returns the maximum of x and y. 

  If (x > = y) then 

    max ← x 

  Else 

    max ← y 

  Endif 

  Return max 

 EndAlgorithm         

Proof:

Algorithm maxOf2(x, y)

# Pre: x and y are numbers.

# Post: Returns the maximum of x and y.

# ((x > = y) ← x is the maximum of x and y) ∧
# (~x > = y) ← y is the maximum of x and y Arithmetic

 If (x > = y) then 

 # x = x Identity Laws

 max ← x

 # max = x

# x > = y ← max is the maximum of x and y Substitution

Else

 # y = y Identity Laws

 max ← y

 # max = y Assignment Rule

# ~x > = y ® max is the maximum of x and y Endif
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# max is the maximum of x and y If Then Rule

Return max

# Returns the maximum of x and y.

EndAlgorithm

   (c)

   Algorithm powerOf2Floor(x) 

 # Pre: x is a number > = 1. 

 # Post: returns the largest power of 2 < = x 

  J ← 0 

  While (2 J  < = x) Do 

   J ← J + 1 

  EndWhile 

  Return 2 J−1  

 EndAlgorithm 

Proof:

Algorithm powerOf2Floor(x)

# Pre: x is a number > = 1.

# (2J < = x ∧ ~2J + 1 < = x) ® 2J is the largest power of 2 < = x Arithmetic

# 0 = 0  Identity Rule

 J ← 0

# J = 0  Assignment Rule

# 2J = 1  Arithmetic

# 2J is a power of 2 and 2J < = x Arithmetic

 While (2J < = x) Do

#  J + 1 = J + 1 Identity Laws

  J ← J + 1

  # J = J Assignment Rule

 EndWhile

#

# 2J-1 is the largest power of 2 < = c. While Do Rule

 Return 2J-1

# Post: returns the largest power of 2 < = x

EndAlgorithm

                                                                                                  



         Sources and Bibliography      

  Sources  

 Aside from the selection and arrangement of topics, some perhaps novel errors, and 

a few personal stories this book consists of paraphrases of standard material that 

can be found in many previously published books. 

 The strictly logical material can be found in many introductory logic texts. The 

most widely use of these is  Introduction to Logic  ( Copi & Cohen, 2005 ). It has a 

good coverage of the subtleties involved in formalizing ordinary informal English. 

Another very readable classic text is  Introduction to Logic  ( Suppes, 1999 ). 

It includes a careful treatment of definitions. An especially concise treatment is 

found in  Logic Primer  (Allen & Hand, 2001). More advanced, but still readable, 

accounts of logic are found in  Language, Proof, and Logic  ( Barwise & Etchemendy, 
2002 ),  Mathematical Logic  ( Kleene, 2002 ),  Introduction to Mathematical Logic  

( Mendelson, 1997 ),  First-Order Logic  ( Smullyan, 1995 ),  Elementary Logic Revised 
Edition  ( Quine, 1980 ),  Methods of Logic  ( Quine, 1982 ),  Introduction to Logic  

( Gensler, 2002 ), and many others. 

 The material on decision tables is based on  Decision Tables in Software 
Engineering  ( Hurley, 1983 ). The discussion of algorithmic unsolvability is based 

on  Algorithmics the Spirit of Computing  ( Harel, 2004 ) and  Introduction to 
Automata  ( Nelson 1968 ). The discussion of program correctness proofs is based on 

 Proving Programs Correct  ( Anderson, 1979 ),  The Design of Well-Structured and 
Correct Programs  ( Alagic & Arbib, 1978 ),  Formal Methods of Program Verification  

( Berg et al., 1982 ), and  Program Verification  ( Francez, 1992 ). Finally, I have bene-

fited from many of the books described in the following bibliography.   

   Bibliography  

 The books listed below all contain material at or near the intersection of logic with 

computer science. In several cases the books listed here are out of print classics. 

Where I knew of a modern reprint that is the edition described. 
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  Function 

 domain of, 50, 54, 57, 119, 142 

 notation for, 27, 49 

 range of, 50  
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  Functional problem specifications (= problem 

definition) 

 domain, 53, 54 

 domain conditions, 53, 203 

 domain specification, 53 

 range, 53 

 solution conditions, 53  

  Fuzzy logic, 235   

  H 
  Halting problem, 206–209   

  I 
  Identifier, 80, 81, 88, 140–144, 149, 159  

  Identical, 10, 12, 42–47, 84–87, 143  

  Identity relation, 10, 42, 47  

  IEEE Computer Society, 233  

  If and only if 

 connective, 14, 15, 17, 99, 119 

 truth function, 14, 81, 119, 154, 159, 175  

  If else rule, 223, 227  

  If rule, 222, 227  

  If..then 

 connective, 14, 81 

 truth function, 14, 81  

  Implication 

 logical, 166 

 material, 85–86  

  Inclusive or, 14, 16  

  Indicator 

 argument, 35 

 conclusion, 35 

 premise, 35  

  Inductive argument, 34–36, 172  

  Instruction, 5, 8, 27, 35, 52, 67–72, 86, 89  

  Interpretation (= model) 

 of truth functional form, 118 

 of well formed formula (wff), 140, 142–143  

  Invariant assertions, method of, 216   

  L 
  Law of excluded middle, 80, 235  

  Law of noncontradiction, 80, 290  

  Leibniz law, 42–43  

  Lisp, 236  

  Logic 

 circuits, 235 

 classical, 220, 224, 234, 235 

 dynamic, 235 

 Floyd-Hoare, 220, 234 

 Fuzzy, 235 

 intuitionistic, 235 

 modal, 235 

 multi-valued, 235 

 testing, 236 

 3-valued, 235  

  Logical English, 4–21, 43–45  

  Logical equivalence, 60, 122, 148, 154, 159–163  

  Logical implication, 85, 122, 148, 166  

  Logically 

 contingent, L-contingent, 145, 146, 148 

 false, L-false, 145, 146, 148 

 true. L-true, 145–148  

  Logical structure, 3, 15, 29, 38, 99, 121, 122, 

162, 174, 208  

  Logical validity, 166, 177–179   

  M 
  Mask, 79, 92  

  Material equivalence, 83–85  

  Material implication, 85–86  

  Material truth, 88–89  

  Methods 

 formal, 170, 173, 174, 234–236 

 informal, 169, 170, 172–173  

  Modal logic, 235   

  N 
  Name, 5, 6, 8–12, 14, 23–28, 42, 47  

  Natural language translation, 236  

  Negation, 14, 15, 82, 91, 98, 99, 108, 184  

  Not 

 connective, 13, 14, 81 

 truth function, 14, 81   

  O 
  Open 

 description, 27–28 

 statement, 25, 80, 150  

  Or 

 exclusive, 16, 83 

 inclusive, 14, 16, 83   

  P 
  Parenthesis dropping conventions, 18–21, 99, 226  

  Precedence rules, 18, 99, 100  

  Predicate, predicate letter 

 1-place, 6, 7, 9, 12, 42, 86, 178, 238 

 2-place, 6, 7, 9, 10, 47, 49 

 3-place, 6, 7, 11 

 N-place, 6, 11, 140, 142, 143  
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  Premise 

 of an argument, 35 

 indicator, 35, 37  

  Procedure 

 LEQ, 161, 162 

 PC, 224 

 QL, 123, 148, 149 

 SC, 124 

 TFL, 122, 123, 148  

  Problem specification, 53–60, 63, 72, 124, 

137, 163, 203, 204  

  Problem domain, 54, 56, 206  

  Prolog, 236, 237  

  Program 

 design, 4, 54, 67, 131 

 variable, 68, 124, 220  

  Programming challenges, 237–239  

  Proof 

 of algorithmic unsolvability, 203–209 

 of correctness of algorithm, 212–214 

 formal, 190–192, 238 

 informal, 190–191 

 ways of organizing, 191–193  

  Proof strategies 

 adding nonlogical justifications, 

199–201 

 conditional, 195–196 

 direct, 193–195 

 indirect, 196–198  

  Properties of identity relation, 42–43  

  Pseudocode, 4, 5, 67, 68, 70–74, 136   

  Q 
  Quantified forms, 139–151  

  Quantified statement, 23–30, 79, 87–89, 122  

  Quantified variable, 30, 140, 150  

  Quantifier 

 existential, 29, 62, 87, 140, 150 

 scope of, 122, 141 

 universal, 29, 87, 140, 150  

  Quantum 

 computing, 237 

 programming, 237   

  R 
  Reasoning, 3, 4, 8, 29, 33, 56, 105, 

115–117  

  Reducibility of problems, 208, 209  

  Relation 

 domain of, 47, 50 

 functional, 49 

 range of, 47  

  Rivals to classical logic, 234, 235  

  Rule of inference 

 for assignment, 220–221 

 for control structures, 222–224 

 correct, 182, 185, 186 

 incorrect, = formal fallacy, 188 

 properties of, 185–188   

  S 
  Sad camelback notation, 5  

  Scope of a quantifier, 122  

  Sequence 

 finite, 46, 60, 63 

 infinite, 46 

 notations for, 46–47 

 null, 46 

 rule, 222 

 singleton, 46  

  Set 

 complement, 44 

 cross product, 44 

 element of, 43, 44 

 intersection, 44, 75 

 null, empty, 44 

 subset, 44 

 union, 44  

  Short cut evaluation 

 cand, 89 

 cor, 89  

  Simplifying 

 conditions, 124–126 

 program instruction, 124, 155–157 

 SQL, 158 

 statements, 124–126  

  Sound argument, 167  

  SQL, 158, 235  

  Stack, 50–51  

  Statement 

 atomic, 8–11, 15, 80–81 

 closed, 25 

 compound, 13–21, 81, 95–103 

 connective, 13–14, 81 

 open, 25   

  T 
  Tautology, 124, 154, 159, 186, 195, 196  

  Temporal logic, 235  

  Testing, limits of, 211–212  

  TLA+, 236  

  Tracing program execution 

 backwards, 109–110 

 forwards, 105–109  
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  Truth 

 condition, 88–89 

 function, 90–93  

  Truth functional 

 equivalence, 154–159 

 form = tff, 117–121, 123, 238  

  Truth functional connective 

 and, 14, 82 

 if and only if, 14, 83–84 

 if..then.., 14, 85, 86 

 not, 14, 82 

 or, 14, 83 

 xor, 91–93  

  Truth functional logic, 139–140  

  Truth functional properties of program 

designs, 129–138  

  Truth table 

 parts of, 100–101 

 reading right to left, 103 

 test for validity, 174–177   

  U 
  Unsolvability.  See  Algorithmic unsolvability   

  V 
  Vagueness, 3–4, 56, 58  

  Valid argument, 176–178, 182, 185–186  

  Validity 

 logical, 166, 177–178 

 truth functional, 171–177 

 truth table test for, 174, 175  

  Valuation function, 119–121, 142  

  3-Valued logic, 233, 235  

  Variable 

 bound, 141, 150 

 free, 150, 160 

 instantiated, 144 

 logical, 23, 24, 140 

 program, 68, 124  

  Vocabulary of an interpretation, 142, 143   

  W 
  Well formed formula (wff), 140–151, 

153, 159–163, 171, 175, 277–279, 

284, 290  

  What can go wrong with problem 

specifications 

 ambiguity, 57, 58 

 functional ambiguity, 57, 58 

 incompleteness, 56, 58 

 logical inconsistency, 56, 58 

 redundancy, 57, 58 

 vagueness, 57, 58  

  While do rule, 224, 228   

  X 
  Xor 

 truth function, 92, 93     
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